Bituminous Technician 2024

Proficiency Pack

DATE: _____

Name: _____

Employer: ______

MoDOT TM 20: Measurement of Air, Surface and Asphalt Mixture Temperature PROFICIENCY CHECKLIST

Applicant:		
Employer:		
		ı
Trial #	1	2
Certificates or Report of Verification of Accuracy		
(Annual Calibration) available?		
AIR		
1. Pick correct thermometers		
2. Location		
- Mercury, Digital, Max-Min Thermometers		
- shade, no direct sunlight		
- position 4.5 feet above surface		
- safe location		
3. Document to nearest 2° F		
SURFACE		
1. Pick correct thermometers		
2. Procedure		
- Spot Check Disc; place on surface until needle stops moving		
- Infrared; point and shoot		
 Mercury or Max-Min; place under wooden box wait 5 minutes 		
3. Document to nearest 2° F		
ASPHALT MIXTURES		
Pick correct thermometers		
2. Procedure		
- Infrared; point and shoot appropriate location		
- Armored, digital, or BI-Therm Dial; place stem into mixture		
and wait until thermometer reading has stabilized		
3. Document to nearest 5° F		
	PASS	PASS

Examiner:	Date:

AASHTO R 66: Sampling Asphalt Materials PROFICIENCY CHECKLIST

Applicant: _	 	
Employer:		

Trial #	1	2
Describe procedure for taking a daily plant asphalt binder sample:		
1. Wear safety clothing, including insulated gloves, long sleeves, bring a		
marker, and tags.		
2. Obtain a clean dry sample container with lid: 1-pint friction top.		
Option: Write the sample information on the can before sampling.		
3. Open valve and discard at least 1 gallon of material.		
4. Shut off valve, place can underneath the spout.		
5. Open valve, fill can to within ½" of top.		
6. Shut off valve, wait until material quits flowing.		
7. Remove can and put on lid.		
8. Immediately wipe can with clean cloth.		
9. Identify the sample on the can itself, include the ID #, Supplier, Grade of		
the Binder, and Date.		
10. Place the sample in a sealed bag, and a MoDOT shipper if needed, deliver		
to the lab.		

PASS PASS

Examiner:		Date:
Bituminous Technician	Proficiencies	09/24/2021

AASHTO R 97 Sampling Asphalt Paving Mixtures PROFICIENCY CHECKLIST

Applicant:			_
• •			
Employer:			

Trial#		
Trial#	1	2
Describe procedure for taking a loose mix sample from:		
Roadway		
1. Obtain proper sample container for the application		
2. Use template or square nose shovel to define sample location		
3. Using a square nose shovel, obtain sample from defined area, including all fines and not disturbing underlying material		
4. Place collected material in non-absorbent, insulated container for transportation to lab		
5. Label the container: Material type, ID No., JMF, date, time, and location		
Stockpiles		
1. Remove 4 inches from the surface of the stockpile		
2. Create a step like below with a board and shovel and take the sample as shown		
Step Discard Sample		
3. Obtain at least 1 increment from the top, middle, & bottom		
4. Combine to form a field sample		
5. Label the container: Material type, ID No., JMF, date, time, and location		
Streams		
Take 3 approximately equal increments with a sample catcher (Do not overflow the sample catcher)		
2. Combine to form a field sample		
3. Label the container: Material type, ID No., JMF, date, time, and location		

PASS PASS

Examiner:	Date:	
LAGITIII IOI .	 Date.	

AASHTO R 47: Reducing Samples of Asphalt Mixtures to Testing Size PROFICIENCY CHECKLIST

	Applicant:			
	Employer:			
	Tria	al #	1	2
	echanical Splitter Methods	\perp		
	sing Type A Splitter (Quartermaster)			
	necked for cleanliness and applied approved asphalt release agent			
	sitioned sample receptacles properly to receive the quartered portions, without loss of material			
	opper doors closed and secured			
	pured sample using a continuous or segmented pour from multiple directions around the hopper			
	eleased the handle to drop the asphalt mixture through the dividers into the receptacles			
	emoved any material retained on surface into the appropriate receptacle			
	imples taken from opposing corners for reintroduction into hopper			
Sp	olit as many times as necessary for appropriate test			
	Construction of Calling (Diffic Calling)			
	Sing Type B Splitter (Riffle Splitter)			
	Checked for cleanliness (optional: Riffle Splitter can be heated, not exceeding 230°F or 110°C)	-		
	All surfaces coming into contact with asphalt mixture coated with approved release agent			
	Properly placed the receptacles under the splitter			
	Placed the sample uniformly in the hopper from edge to edge (can use straight edge pan)			
	Rate at which sample introduced allows free flow into sample containers			
6.	Repeated until sample size obtained			
Oı	uartering Method			
	Placed Asphalt Mixture on a non-stick, clean, and level surface (approved asphalt release agent can be used)			
	Thoroughly mixed the material by turning it over at least 4 times using a flat bottom scoop			
	After the last turning, formed conical pile depositing each scoop full on top of the previous one			
	Flattened the pile into uniform thickness and diameter by pressing down on the apex			
	(diameter should be approximately 4 to 8 times the thickness)			
5	Pressed quartering template completely down to bottom surface dividing the pile into four quarters			
	Removed two opposite quarters, including the fines			
	Repeated steps 2 through 6 until desired sample size was attained			
			PASS	PASS
			FAIL	FAIL

Bituminous Technician Proficiencies 09/24/2021

_Date:_____

AASHTO T 329: Moisture Content of Asphalt Mixtures by Oven Method PROFICIENCY CHECKLIST

Ap	olicant	_
En	ployer	_
	ampling	

Test sample obtained by AASHTO R 97 Representative sample obtained; 1000 g minimum Procedure 1. Mass of the sample container determined to the nearest 0.1 g 2. Sample placed into container, distributed evenly, and initial temperature taken and recorded = original temperature 3. Mass of sample and container determined to nearest 0.1 g 4. Calculate the mass of the moist sample = (Mi)	2
Representative sample obtained; 1000 g minimum Procedure 1. Mass of the sample container determined to the nearest 0.1 g 2. Sample placed into container, distributed evenly, and initial temperature taken and recorded = original temperature 3. Mass of sample and container determined to nearest 0.1 g	
1. Mass of the sample container determined to the nearest 0.1 g 2. Sample placed into container, distributed evenly, and initial temperature taken and recorded = original temperature 3. Mass of sample and container determined to nearest 0.1 g	
Mass of the sample container determined to the nearest 0.1 g Sample placed into container, distributed evenly, and initial temperature taken and recorded = original temperature Mass of sample and container determined to nearest 0.1 g	
Sample placed into container, distributed evenly, and initial temperature taken and recorded = <u>original temperature</u> Mass of sample and container determined to nearest 0.1 g	
and recorded = <u>original temperature</u> 3. Mass of sample and container determined to nearest 0.1 g	
Mass of sample and container determined to nearest 0.1 g	
·	
4. Calculate the mass of the moist sample = (M _i)	
5. Sample placed in a drying oven $325 \pm 25^{\circ}F$ ($163 \pm 14^{\circ}C$) for 90 ± 5 minutes	
6. After 90 minutes, determined the sample mass = (A)	
7. Returned to oven for 30 \pm 5 minutes	
8. After 30 minutes, determine the sample mass = (B)	
9. Calculate the percent change and determine if the sample is at constant mass	
(A - B)	
% Change = $\frac{(A - B)}{\Delta} \times 100$	
A	
10. Continued to dry the sample in 30-minute intervals until reached constant	
mass, when change in mass was ≤ 0.05%	
11. Sample and container cooled to <u>original temperature</u> , then weighed = (M _f)	
12. Percent Moisture calculated and reported to the nearest 0.01%	
Moisture Content, $\% = \frac{(M_i - M_f)}{M_f} \times 100$	
X 100	
^{l*l} f	

PASS PASS

Examiner:				_ Date:			
	_			_		_	

AASHTO T 166: Bulk Specific Gravity of Compacted Asphalt Mixtures Using Saturated Surface Dry Specimens PROFICIENCY CHECKLIST

Applicant:	 	 	
Employer:	 	 	

METHOD A - Suspension Trial	1	2
*Test Specimens are laboratory-compacted specimens or cored from asphalt pavements.		
*Recently compacted laboratory samples (not exposed to moisture) do not require drying.		
DRYING THE SPECIMEN		
Oven dried the specimen to a constant mass		
a. Initially overnight (125 ± 5°F)		
b. Next day weigh in 2hr. intervals until change of less than 0.05%		
c. Cooled specimen to room temperature		
OR (AASUTO DES)		
Vacuum dried the specimen to a constant mass (AASHTO R79)		
a. Completed at least (2) cycles in the Vacuum Drying Apparatus		
b. Specimen weighed after each cycle and reported to 0.1 g		
c. Continued vacuum cycles as needed until the weight change was less than 0.05%		
d. Cooled specimen to room temperature		
Specimen Preparation:		
a. Specimens dry and at room temperature 77 \pm 9°F (25 \pm 5°C)		
Equipment Preparation:		
a. Basket is immersed, centered & attached to scale		
b. Overflowed the bath until water flowed out of the outlet		
c. Adjusted temperature of bath to 77 ± <mark>2°F</mark> (25 ± 1°C)		
d. Prepared damp-dry towel, (Wrung out excess water)		
PROCEDURE		
1. Dried Specimen to a constant mass (If needed)		
2. Specimen at room temperature 77 ± 9°F (25 ± 5°C)		
3. (Tarred the scale with basket attached)		
Weighed specimen in air to nearest 0.1g, reported as "A"		
4. Immersed the specimen in 77 ± 2°F (25 ± 1°C) water for 4 ± 1 minutes		
5. Recorded the weight under water to 0.1 g, reported as "C"		
6. Within 15 seconds: Specimen was removed from the bath, blotted with damp-towel to		
SSD state, and weighed specimen to the nearest 0.1g , reported as " B "		
7. Calculated Bulk Specific Gravity (Gmb), result reported to the 0.001		
Weight in Air (A)		
Weight Surface Dry (B) - Weight in Water (C)		
8. Calculated Percent of Water Absorbed by Volume, reported to nearest 0.01%.		
NOTE: Test not valid if over 2%		
Weight Suface Dry – Weight in Air x100		
Weight SurfaceDry – Weight in Water		
e.g zyucez., e.g u u.e.	PASS	PASS

Examiner: _____ Date: _____ Date: _____ Bituminous Technician Proficiencies 09/24/2021

AASHTO T269: Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures

Applicant					-		
Employer							
lculate both % Density port values to the corre Mix Number	ect decimal		g the follow	ing inform	ation:		2.48
SPECIMEN #	1	2	3	4		5	
WEIGHT IN AIR	3690.3	3691.9	3692.8	3690.6	3698.		693.4
SSD WEIGHT	3714.4	3715.6	3715.3	3716.4	3722.8		715.2
WT IN WATER	2100.9	2101.2	2108.0	2099.6	2106.1	1 2	113.7
VOLUME							
SpG (Gmb)							
% AIR VOIDS							
% Density							
Answers Correct Reported to proper de	ecimal place	;			Trial#	1	2
						PASS	PASS
						FAIL	FAIL
			Date:				

Bituminous Technician Proficiencies 09/24/2021

MoDOT TM 54: Determining the Asphalt Content of an Asphalt Mixture

PROFICIENCY CHECKLIST

Applicant:		
Employer:		
Employer:		
Trial#	1	2
Note: Student will be allowed to use the module instructions for background count:		
Gauge Preparation Checklist		
1. Have a current 20 − 1 minute stability test, 3 months or less		
2. Run a background daily or when conditions change		
3. Make certain proper calibration is being used		
Explain a Nuclear Sample Preparation and Testing Procedure		
1. Obtain proper asphalt mixture sample		
2. Place sample in sample pan in two lifts		
3. Place on tared scale and check for proper sample weight		
4. Compact sample into the pan		
5. Recheck the weight		
6. Place sample pan in the nuclear machine and press start/enter button		
7. Record gauge results		
	PASS	PASS
	FAIL	ΕΛΤΙ
	IAIL	IAIL
Examiner:Date:		

MoDOT - TCP 09/27/2023