

AGGREGATE TECHNICIAN

PART ONE

Aggregate Technician

2024 – Updates

- New: Aggregate is now divided into two parts, see the COURSE CONTENT PAGE for the division.
 - NOTE: Must have both parts to receive certification in Aggregate Technician.
- No major changes in the methods.

2023 – Updates

- <u>AASHTO T11</u>:
 - **T11 Oven**: The thermometer for measuring the oven temperature shall meet the requirements of M339M/M339 with a range of at least 90 to 130°C (194 to 266°F) and an accuracy of ± 1.25°C (± 2.25°F) (see note 1),
 - NOTE 1: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM 2877 digital metal stem thermometer
 - ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class, Type T any Class
 - IEC 60584 thermocouple thermometer, Type J or K, Class 1, Type T any Class
 - Dial gauge metal stem (bi-metal) thermometer
 - **T255 Oven**: The thermometer for measuring the oven temperature shall meet the requirements of M339M/M339 with a range of at least 90 to 130°C (194 to 266°F) and an accuracy of ± 1.25°C (± 2.25°F) (see note 1),
 - NOTE 1: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM 2877 digital metal stem thermometer
 - ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class, Type T any Class
 - 60584 thermocouple thermometer, Type J or K, Special class 1, Type T any Class
 - Dial gauge metal stem (Bi-metal) thermometer

• <u>AASHTO T27</u>:

- **T27 Oven**: The thermometer for measuring the oven temperature shall meet the requirements of M339M/M339 with a range of at least 90 to 130°C (194 to 266°F) and an accuracy of ± 1.25°C (± 2.25°F) (see note 3),
 - NOTE 3: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM 2877 digital metal stem thermometer
 - ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class, Type T any Class
 - IEC 60584 thermocouple thermometer, Type J or K, Class 1, Type T any Class
 - Dial gauge metal stem (Bi-metal) thermometer

2022 – Updates

No updates

2021 – Updates

• **AASHTO T11** - Mechanical Washing: Do not wash the sample in a mechanical washer for more than 10 min.

2020 – Updates

- AUDIT NOTIFICATION SLIDE ADDED TO ALL MANUALS: To all material testers, who work on Missouri Highways, this includes Consultants, Contractors, City, County, and MoDOT workers; you will be audited by MoDOT IAS Inspectors and sometimes FHWA personnel.
- No Method Changes for 2020.

COURSE CONTENT

AGGREGATE TECHNICIAN

PART ONE

AASHTO R 90	Sampling of Aggregate Products	
AASHTO R 76 ASTM C702	Reducing Samples of Aggregate to Testing Size	
AASHTO T 255 ASTM C566	Total Evaporable Moisture Content of Aggregate by Drying	
AASHTO T 11 ASTM C117	Materials Finer Than No. 200 Sieve in Mineral Aggregates by Washing	
AASHTO T 27 ASTM C136	Sieve Analysis of Fine and Coarse Aggregates	
Appendix		
Glossary		

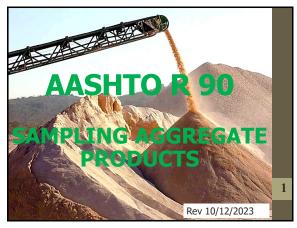


Aggregate Technician

PART ONE

AASHTO R 90

Sampling Aggregate Products


Required Audits

<u>All testers</u> on Federal-Aid Projects (MoDOT or Off-System) are required by the FHWA to be audited at least once per year.

Reasons:

- To ensure proper test procedures are being utilized.
- To ensure testing equipment is calibrated and operating properly.
- Types of Audits; procedure or comparison.
- **Be Proactive;** schedule your audit as early as possible with MoDOT Materials in district offices, do <u>NOT</u> wait till the end of the year.
- **Provide Proof;** when audited, present a MoDOT Certification Card, or a MoDOT Letter.

1

2

SCOPE

- This practice covers the procedures for obtaining representative samples of Coarse Aggregate (CA), Fine Aggregate (FA), or combinations of Coarse and Fine Aggregate (CA/FA) products to determine compliance with requirements of the specifications under which the aggregate is furnished.
- This method includes sampling from conveyor belts, transport units, roadways, and stockpiles.

3

4

5

4

SIGNIFICANCE AND USE

- Sampling is a critical step in determining the quality of the material being evaluated. Care shall be exercised to ensure that samples are representative of the material being evaluated.
- This practice is intended to provide standard requirements and procedures for sampling coarse, fine, and combination of coarse and fine aggregate products.

5

SECURING SAMPLES

(All Methods)

- *General*: Where practicable, samples to be tested for quality shall be obtained from the finished product.
- Inspection: The material to be sampled shall be visually inspected to determine discernible variations, corrective action shall be taken to establish *homogeneity* in the material prior to sampling.

Examples of variations: Segregation, clay pockets, varying seams, boulders.

TERMINOLOGY

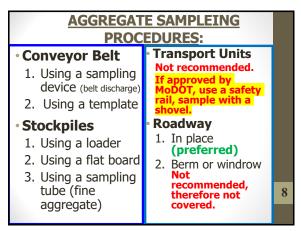
• Coarse Aggregate (CA)

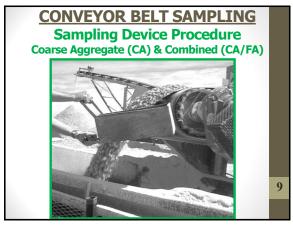
• All the material retained on the #4 (4.75mm) sieve and above.

Fine Aggregate (FA)

• All the material passing the #4 (4.75mm) sieve.

Special Note


 MoDOT – Specific sample sizes are on the following chart. These sizes are different from AASHTO/ASTM specifications.


6

7

MoDOT AGGREGATE SAMPLE SIZES				
Maximum size Aggregate	Minimum Weight/Mass of Sample			
2″ (50 mm)	80 lb. (36kg)			
1-1⁄2″ (37.5 mm)	54 lb. (25kg)			
1" (25.0 mm)	36 lb. (16kg)			
³ ⁄4″ (19.0 mm)	22 lb. (10kg)			
½″ (12.5 mm)	14 lb. (6kg)			
³⁄₃″ (9.5 mm)	10 lb. (5kg)			
Fines and Natural Sands	500g 7			

8


11

PROCEDURE

- **1.** Plant is operating at the usual rate.
- Conveyor Belt Sampling Device 2. Select a random sample from a conveyor belt discharge during production.
 - · If sampling for quality control or acceptance, record the sampling time, date, and location.
 - Avoid the initial or end of an aggregate . run.

11

- Conveyor Belt Sampling Device 3. Pass the sampling device at a constant speed through the entire cross-section of the stream flow once in each direction without overflowing the sampling device.
- **4.** Include all material from the sampling device when empting into the container.
- **5.** Obtain one or more equal increments as required for testing, and combine to form a field sample. 12

14

PROCEDURE

NOTE: Record sampling time or location, or both.

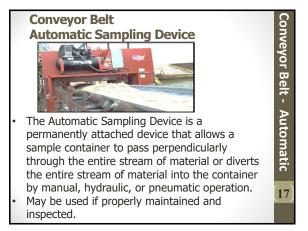
STOP the conveyor belt.
 Lock and Tag Out !

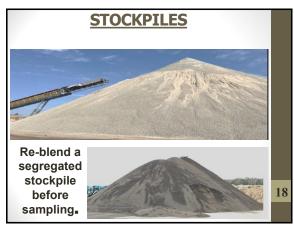
Conveyor Belt -

Template

15

Conveyor Belt - Template


16


- Select a random sample area from production.
 Note: Avoid sampling at the beginning or end of an aggregate run.
- **3.** Insert the sampling template on the belt to yield one increment.

16

- **4.** Remove all material including the fines from inside the template with a scoop and a brush into a clean dry container.
- **5.** Obtain one or more equal increments to supply enough material for the required test(s).
- Combine the increments to form a field sample.

17

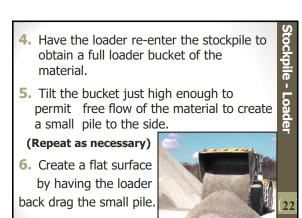
Stockpile – Loader Procedure	
(Sampling from a flat surface created by a load	er)

đ

kpile -

Loa

D


21

NOTE: Record sampling time or location, or both.

- **1.** Re-blend segregated material with the loader.
- 2. Direct the loader operator to enter the stockpile with the bucket at least **1 foot** above the ground level to avoid contaminating the stockpile.

3. Discard the first bucket-full.

23

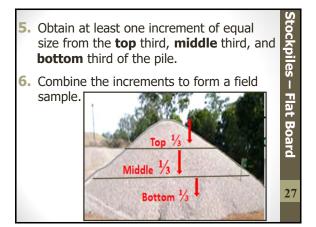
- Collect a minimum of **three random** locations from the flat surface that are at least **one foot** from the sample pile edge. Fully insert the shovel, exclude the underlying material, roll back the 7. Collect a minimum of three random
- **8.** Fully insert the shovel, exclude the shovel, and without losing material place it in a clean dry container.
- 9. Combine the increments to form a field sample.

25

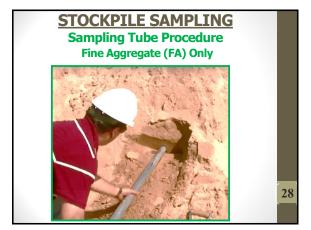
26

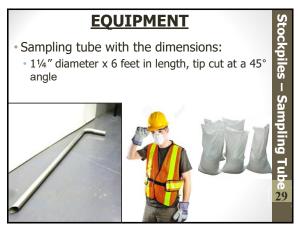
PROCEDURE

(Sampling from a horizontal surface on a stockpile face) **NOTE:** Record sampling time or location, or both.


Stockpiles

Flat Board


26


- **1.** With a shovel, create a horizontal surface with a vertical face.
- 2. Insert a flat board against a vertical face behind sampling location to prevent sloughing.
- 3. Do not use sloughed material.
- **4.** Obtain a sample from the horizontal surface near vertical face.

28

29

PROCEDURE

Stockp **NOTE:** Record sampling time or location, or both. **1.** Remove the outer layer of the stockpile. les – **2.** Using a sampling tube obtain a minimum of **5** samples from random locations on Sa the stockpile.

30

3. Combine the increments in a clean dry sample container to form a field sample.

32

Transport Units NOT RECOMMENDED,

NOT RECOMMENDED, However, for some samples MoDOT may approve sampling from transport Units.

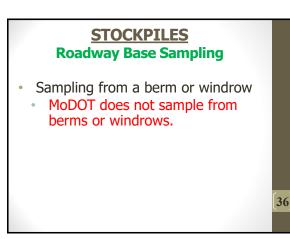
- Use a platform with safety railing.
- Use a shovel.
- Remove 1 foot from the top surface.
- Visually divide an area into 4 quadrants.
- Obtain an increment from a quadrant and another increment from the opposite quadrant, 31 repeat if needed, combine for a sample.

34

PROCEDURE

NOTE: Record sampling time or location, or both.

- Roadway Base -In-Place **1.** Obtain a representative sample after spreading and before compaction using a random number set for a QC/QA sample.
- 2. If not a QC/QA sample, obtain at least **1** or more random increments before compaction for a field sample.
- 3. Clearly mark the specific area from which materials will be removed with the template or square nosed shovel.


34

37

- 4. With a shovel, remove the full depth of material from inside the marked area; exclude any underlying material.
- 5. Combine the increments to form a field sample.

38

SHIPPING SAMPLES

Proper Container

- Bags made for shipping aggregates, or other suitable containers that prevent contamination or loss during shipment.
- NOTE: MoDOT prefers bags

40

Proper Identification:

- Shipping containers for aggregate samples shall have suitable individual identification that is clearly marked on the outside and enclosed.
- Include ID, location, date & time, material type, and quantity of material represented by the sample, if applicable.

38

Shipping

Samples

41

Common Errors (All methods):

- Using an improper sampling device.
- Sampling in segregated areas.
- Not obtaining enough increments.
- Not labeling the bags inside and out with proper identification.
- Allowing overflowing of a stream flow device.
- Not being safe. (example; Not performing lock out/tag out on a stopped conveyer belt.)

39

AASHTO R 90: Sampling of Aggregates PROFICIENCY CHECKLIST

	Applicant		
	Employer		
	Employer		
	NOTE: For all QC/QA or Acceptance sampling, record the time or location or both.	1	T
	yor Belt Sampling – Sampling Device – Coarse/Combined Aggregate	Trial	Trial
NOT	E: Automatic belt samplers may be used if properly maintained and inspected.	1	2
1.	Plant was operating at the usual rate.	ļ	ļ
2.	Random samples taken from a conveyor belt discharge taken from production.		
	 Avoided sampling the beginning or end of a run. 		
3.	Sample taken from the entire cross-section of material once in each direction without overflowing the device.		
4.	Included all material from the sampling device into a clean empty container.		
5.	Obtained 1 or more increments to form a field sample.		
Conve	yor Belt Sampling – Template - Coarse/Combined Aggregate		
1.	Conveyor belt stopped, locked and tagged out.		
2.	Random samples taken from production.		
	- Avoided sampling at the beginning or end of a run.		
3.	Template placed on the belt to yield one increment.		
4.	All material inside the template scooped into a proper container including fines.		
5.	Obtained 1 or more increments to combine for a field sample.		
Stockp	ile Sampling – Flat Board – Coarse/Combined Aggregate		
1.	Created a horizontal surface with a vertical face.		
2.	Inserted board vertically against a vertical face to prevent sloughing.		
3.	Discarded sloughed material.		
4.	Obtained a sample from the horizontal surface close to the vertical face.		
5.	Obtained at least one increment from; the top third, the middle third, and the bottom third of the stockpile.		
6.	Combined to form a field sample.		
	ile Sampling - Sampling Tube - Fine Aggregate Only	ļ	
	Outer layer of the stockpile removed.		
2.	Obtained a minimum of 5 random tube insertions on the stockpile.		
3.			
Stockp	ile Sampling – Loader – Coarse/Combined Aggregate		
1.	Segregation avoided by re-blending the pile.		
2.	Loader entered the pile with bucket at least 1 foot above the ground.		
3.	Discarded first bucket-full.		
4.	Loader re-entered stockpile to obtain a full loader bucket of material		
5.	Bucket tilted just enough to free flow material creating a small sampling pile. (Can go back for more).		
6.	Back-dragged the small pile to form a sampling pad.		
7.	Randomly collected a minimum of 3 increments with a shovel at least 1 foot from sample pile edge.		
8.	Fully Inserted the shovel, excluding underlying material, placed in a clean dry container.		
9.	Combined increments to form a field sample.		
Roadw	ay Base Sampling – In-Place – Coarse/Combined Aggregate		
1.	Obtained a representative sample after spreading and before compaction using a random number set for a		
-	QC/QA sample.		
2.	If not a QC/QA sample, obtained at least 1 or more random increments before compaction for a field sample.		
3.	Clearly marked the specific area with a template or square nosed shovel.		
4.	Used a square nose shovel and or a metal template to mark the area.		
5.	With a shovel, removed the full depth of material from inside the marked area excluding underlying material.		
6.	Combined increments to form a field sample.	DAGO	DAGO
<		PASS	PASS FAIL
Examin	er: Date:	FAIL	ГАIL

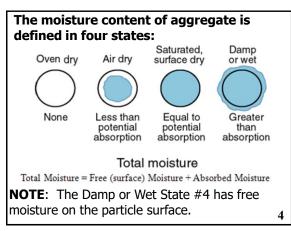


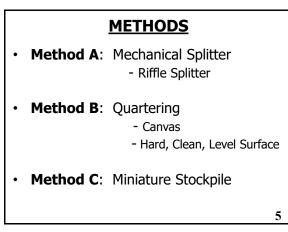
Reducing Samples of Aggregate

To Testing Size

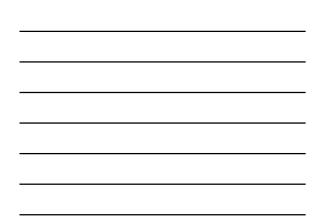
SIGNIFICANCE AND USE

 The significance for AASHTO R 76, is to reduce a large sample obtained in the field or produced in the laboratory to the proper size for conducting a number of tests to describe the material and measure its quality. These methods are conducted in such a manner that the smaller test sample portion will be representative of the larger sample and therefore the total supply.


2


SAMPLING

 The samples of aggregate obtained in the field shall be taken in accordance with AASHTO R 90 (ASTM D75), or as required by individual test methods and shall be reduced by AASHTO R 76 (ASTM C702).


3

2

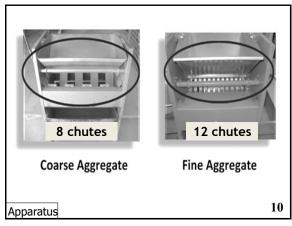
Method Selection			
METHOD A	METHOD B	METHOD C	
Mechanical Splitter	Quartering	Miniature Stockpile	
"Air Dry"	"Free Moisture"	"Free Moisture"	
Fine	Fine	Fine	
Aggregate	Aggregates	Aggregates	
Coarse	Coarse		
Aggregates	Aggregates		
Combined/Mixed	Combined/Mixed		
Aggregates	Aggregates	_	
		6	

Things to know before you begin:

- Minimize the chance of variability during handling.
- The reduction method used depends upon the maximum aggregate size, the moisture condition, and the equipment available.
- A sample collected in two or more increments shall be thoroughly mixed before reducing.
- The mechanical splitter is the preferred method for reducing coarse aggregate.

8

7


APPARATUS

Method A - Mechanical Splitter

- Shall have an even number of equal width chutes.
- At least **8 chutes** for coarse aggregate.
- At least **12 chutes** for fine aggregate.
- Must discharge alternately to each side of the splitter.
- Equipped with 2 receptacles to hold the two halves of the sample following splitting.

9

7

- Equipped with a hopper or straightedge pan, which has a width equal to or slightly less than the overall width of the assembly of chutes.
- Designed for smooth flow without restriction or loss of material.
- For coarse aggregate and mixed aggregate, the minimum width of the individual chutes shall be approximately 50% larger than the largest particles in the sample to be split.

11

Apparatus

11

 For dry fine aggregate in which the entire sample will pass the ³/₈" (9.5mm) sieve, the minimum width of the individual chutes shall be at least 50% larger than the largest particles in the sample and the maximum width shall be ³/₄" (19mm).

NOTE: A preliminary split may be made using a mechanical splitter to reduce a fine aggregate sample that is very large. Set the chute openings to 1½ inch or more to reduce the sample to not less than 5,000g. Dry the obtained portion and reduced it to testing sample size using Method A.
 Apparatus

SAMPLE PREPARATION

Method A - Mechanical Splitter

- Sample should be air-dry.
- Clean the chutes before splitting and between splits.
- Large samples should be representative of the material.

(Blending may be necessary)

13

13

14

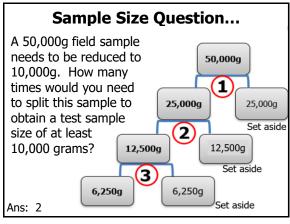
PROCEDURE

Method A - Mechanical Splitter

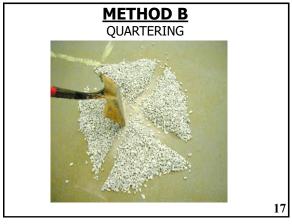
- **1.** Material is in an air-dry condition.
- **2.** Adjust the openings for the correct chute size.
- **3.** Load the hopper uniformly, distributing the sample from edge to edge, avoiding segregation.
- **4.** The rate at which the sample is introduced shall allow free flowing through the chutes into the receptacles below.

14

5. Reintroduce the portion of the sample in one of the receptacles into the splitter as many times as necessary to reduce the sample to the size specified for the intended test.


NOTE: The portion of the material collected in the other receptacle may be reserved for reduction in size for the other tests.

Procedure


15

<u>EQUIPMENT</u>

Method B - Quartering

- Straight-edged scoop
- · Square-nosed shovel or trowel
- Broom or brush
- Canvas or Tarp for alternate method approximately 6' x 8'
- Long stick or pipe

18

19

20

SAMPLE PREPARATION

Method B - Quartering

- Fine, coarse, or combined aggregates must be in a moist condition.
- For fine aggregates, the sample should be wet enough to stand in a vertical face. If the sample does not have free moisture on the surfaces, the sample may be moistened to achieve this condition.

PROCEDURE

Method B - Quartering

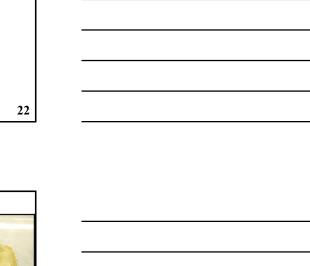
- **1.** Place the sample on a clean, hard, level surface where there will be neither loss of material nor the accidental addition of foreign material.
- 2. Mix by turning the material over completely at least **THREE** times until thoroughly mixed.
- 3. Form a conical pile.

20

19

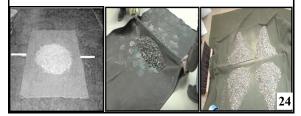
- **4.** Flatten evenly so the diameter is 4-8 times the thickness.
- **5.** Divide this into 4 equal quarters with a shovel or trowel.
- **6.** Remove two diagonally opposite quarters, including all fine material, brush the spaces clean and set the other two quarters aside for later use.

Procedure


22

Γ

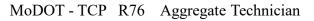
qu	ike the remaining 2 quarters, mix and uarter until the sample is reduced to the esired size.
NOTE compl	E: Save the unused portion until testing is leted.


Procedure 23

Method B - Quartering Flatten 4-8 times Mixing **Conical pile** the thickness keep keep discard discard discard discard Mix the Remove 2 Keep remaining keep 23 quarters quarters Quarter

Method B - Alternate Quartering Method Using a Canvas and Broom Stick

- **1.** Place a canvas blanket on a clean, level surface.
- Mix by lifting opposite corners towards each other causing the material to be rolled a minimum of four times.
- **3.** Use a stick to quarter as shown below.



25

26

EQUIPMENT

Method C - Miniature Stockpile

- Shovel or trowel (For mixing the aggregate)
- Straight-edged scoop
- Small sampling thief, small scoop, or spoon

28

PROCEDURE

27

28

30

Method C - Miniature Stockpile

- **1.** Place the original sample of damp fine aggregate on a hard clean, level surface.
- **2.** Mix the material thoroughly by turning the entire sample over at least three times.
- **3.** With the last turning, shovel the entire sample into a conical pile by depositing each shovel full on top of the preceding one.

29

Optional step: The conical pile may be flattened to a uniform thickness and diameter by pressing the apex with a shovel or trowel so that each quarter sector of the resulting pile will contain the material originally in it.

4. Obtain a sample by selecting at least **FIVE** increments of material at random locations from the pile and combine them to attain the appropriate sample size.

Procedure

Common Errors:

- Improper method for reduction based on moisture condition.
- Using wrong size chute openings.
- Failure to introduce sample to chutes evenly.
- Failure to use proper flow rate while splitting.

30

AASHTO R 76: Reducing Field Samples of Aggregate to Testing Size **PROFICIENCY CHECKLIST**

Applicant_____

Employer_____

Trial #	ŧ 1	2
Method A – Splitting		
8 chutes for Coarse (CA), 12 chutes for Fine (FA)		
1. Material in an air-dry condition.		
2. Adjusted the openings to be 50% larger than the largest particle.		
3. Material spread uniformly on feeder from edge to edge.		
4. Rate of feed slow enough so that sample flows freely through chutes.		
5. Material in one receptacle re-split until desired weight was obtained.		

Method B - Quartering	
1. Moist sample placed on clean, hard, level surface.	
2. Mixed by turning over completely at least 3 times with shovel.	
3. Conical pile formed.	
4. Pile flattened to uniform thickness and diameter of 4-8 times thickness.	
5. Divided into 4 equal portions with shovel or trowel.	
6. Removed two diagonally opposite quarters, including all fines.	
7. Remaining quarters, mixed and quartered until reduced to desired sample	
size.	
NOTE: The sample may be placed upon a canvas quartering cloth and a stick or pipe may be placed under the tarp to divide the pile into quarters.	

Method C – Miniature Stockpile (Damp Fine Aggregate Only)	
1. Moist fine aggregate sample placed on clean, hard, level surface.	
2. Material thoroughly mixed by turning over completely three times.	
3. Small stockpile formed.	
4. Obtain at least 5 samples taken at random with sampling thief, small	
scoop, or spoon, combined to attain appropriate sample size.	

Pass Pass

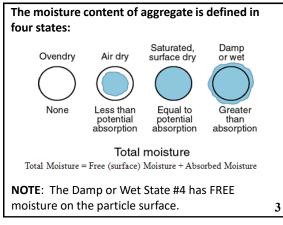
Fail Fail

Examiner:_____Date:_____

Total Evaporable Moisture Content

of Aggregate by Drying

AASHTO T 255 Total Evaporable Moisture Content of Aggregate by Drying



2

SCOPE

 This test method covers the determination of the percentage of evaporable moisture in a sample of aggregate by drying both surface moisture and moisture in the pores of the aggregate. Some aggregate may contain water that is chemically combined with the minerals in the aggregate. Such water is not evaporable and is not included in the percentage determined by this method.

2

SIGNIFICANCE AND USE

- Used for adjusting batch quantities of ingredients for concrete.
- Measures the moisture in a test sample.
- Calculates the free moisture of aggregates to adjust for water-cement ratio.
- Affects the concrete plant report calculations.
- Affects the asphalt plant production rate and asphalt-cement content.
- NOTE: Larger particles will require greater time for the moisture to travel from the interior to the surface.

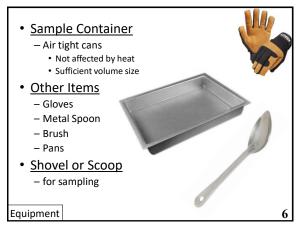
4

EQUIPMENT

<u>Scale</u>

 Readable to 0.1 percent of the sample mass, or better

• Source of Heat


- Ventilated oven 230 ± 9°F (110 ± 5°C)

-Hot plate

- Ventilated microwave oven
- Electric heat lamps

5

SAMPLING

- Obtain a sample In accordance with AASHTO R90/ASTM D75.
- Secure a sample of the aggregate representative of the moisture content in the supply being tested and having a mass not less than the amount listed in <u>Table 1</u> using the *Nominal Maximum Size of Aggregate*. (See Glossary for definition)
- Protect the sample against moisture loss prior to determining the mass.

AASHTO Sample Size (TABLE 1)		
Nominal Maximum Size of Aggregate	Minimum Sample Mass	
in. (mm)	Lbs. (g.)	
#4 (4.75)	1.1 (500)	
¾ " (9.5)	3.3 (1,500)	
¹ / ₂ " (12.5)	4.4 (2,000)	
³ ⁄4" (19.0)	6.6 (3,000)	
1" (25.0)	8.8 (4,000)	
1 1⁄2" (37.5)	13.2 (6,000)	

8

PROCEDURE

- **1. Obtain representative sample** in an air tight container.
 - It is advised to retrieve sample from interior of aggregate stockpile.
 - Cover immediately to prevent any moisture loss.
 - Protect the sample against moisture loss when transporting to a testing facility and prior to determining the mass.
- **2. Weigh and record the wet sample** to the nearest 0.1% of the total mass, typically 0.1g.

(From this point on do not lose material or overheat the sample.)

10

11

10

3.	Dry the sample using one of the following;		
	oven, hot plate, or microwave oven.		
-	-Ventilated Oven: (Preferred)		
	• Easily regulated at $230 \pm 9^{\circ}F(110 \pm 5^{\circ}C)$.		

- Good for sensitive aggregates.
- -Hot Plate: (Fast) Exercise caution!
 - Periodically stir to avoid overheating causing aggregate to fracture.
 - If aggregate cannot be heated without fracture, use a ventilated oven.

Procedure

11

 Ventilated Microwave Oven: Use a non-metal container, stirring is optional. (If the material explodes you can not use the microwave, go to another method of drying.)
 NOTE: Material used in the microwave cannot be used for any other test method.

4. Remove the sample from the heat source when the sample is thoroughly dried to a *constant mass*.

The sample is thoroughly dried to a constant mass when further heating causes, or would cause, less than 0.1 % additional loss in mass.

- 5. Allow to cool.
- 6. Weigh and record the mass of the dried sample to the nearest 0.1 % of the total mass.
 Procedure 13

13

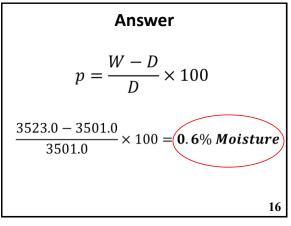
14

CALCULATIONS

Determine the total evaporable moisture content

$$p = \frac{W - D}{D} \times 100$$

- *p* = percent total evaporable moisture content
- W = mass of original sample, (g)
- D = mass of dried sample, (g)


Class Practice

Calculate the total evaporable moisture content:

- Mass of original sample = 3,523.0 g
- Mass of dried sample = 3,501.0 g
- Report your answer to the nearest 0.1%

15

14

16

REPORTING RESULTS

- Record results in the bound field book to the nearest **0.1 %** total moisture.
- Notify plant operator of results.

17

Common Errors:

- Overheating
- Insufficient sample size
- Loss of material when stirring
- Loss of moisture prior to testing
- Sample not dried to a constant mass

18

17

AASHTO T 255: Total Evaporable Moisture Content of Aggregate by Drying PROFICIENCY CHECKLIST

Applicant_____

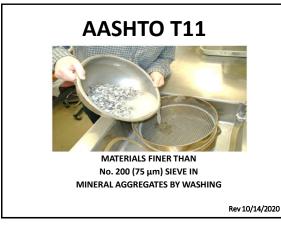
Employer_____

 5. Sample dried by a suitable heat source 6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating 7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass 8. Moisture content calculated by: wet sample mass - dried sample mass x 100 			Trial #	1	2
Nominal Maximum Size of Aggregate in. (nm) Minimum Sample Mass Lbs. (g.) #4 (4.75) 1.1 (500) #4 (4.75) 1.1 (500) #6" (12.5) 4.4 (2,000) #7" (19.0) 6.6 (3,000) 1" (25.0) 8.8 (4,000) 1 ''' (25.0) 8.8 (4,000) 1 ''' (27.5) 13.2 (6,000) 3. Mass determined to the nearest 0.1% of the total mass	1. Representative test sample secu	ıred			
of AggregateMassin. (mm)Lbs. (g.)#4 (4.75)1.1 (500) $\frac{3}{4}$ " (9.5)3.3 (1,500) $\frac{3}{4}$ " (12.5)4.4 (2,000) $\frac{3}{4}$ " (19.0)6.6 (3,000)1" (25.0)8.8 (4,000)1" (25.0)8.8 (4,000)1 $\frac{1}{2}$ " (37.5)13.2 (6,000)3. Mass determined to the nearest 0.1% of the total mass4. Loss of moisture avoided prior to determining the mass5. Sample dried by a suitable heat source6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass8. Moisture content calculated by: % moisture =wet sample mass - dried sample mass x 100	2. Test sample mass conforms to feedback	ollowing from the A	ASHTO T 255 Table:		
#4 (4.75) $1.1 (500)$ $3/6" (9.5)$ $3.3 (1,500)$ $3/6" (9.5)$ $3.3 (1,500)$ $3/6" (12.5)$ $4.4 (2,000)$ $3/4" (19.0)$ $6.6 (3,000)$ $1" (25.0)$ $8.8 (4,000)$ $1 '42" (37.5)$ $13.2 (6,000)$ $3.$ Mass determined to the nearest $0.1%$ of the total mass $4.$ Loss of moisture avoided prior to determining the mass $5.$ Sample dried by a suitable heat source $6.$ If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating $7.$ Sample dried to constant mass and mass determined to nearest $0.1%$ of the total mass $8.$ Moisture content calculated by: $%$ moisture $=$ wet sample mass - dried sample mass $x 100$		•			
$3.3 (1,500)$ $4.7 (12.5)$ $4.4 (2,000)$ $4.7 (19.0)$ $6.6 (3,000)$ $1'' (25.0)$ $8.8 (4,000)$ $1'' (25.0)$ $8.8 (4,000)$ $1''' (37.5)$ $13.2 (6,000)$ 3. Mass determined to the nearest 0.1% of the total mass4. Loss of moisture avoided prior to determining the mass5. Sample dried by a suitable heat source6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass8. Moisture content calculated by: % moisture = $\frac{\text{wet sample mass - dried sample mass}}{\text{stirre to sample mass - dried sample mass}} \times 100$	in. (mm)	Lbs. (g.)			
$\frac{42^{\circ}(12.5)}{19.0}$ $\frac{4.4}{2,000}$ $\frac{42^{\circ}(12.5)}{19.0}$ $\frac{4.4}{6.6}(3,000)$ $1^{\circ}(25.0)$ $8.8(4,000)$ $1^{\circ}(25.0)$ $8.8(4,000)$ $1\frac{42^{\circ}}(37.5)$ $13.2(6,000)$ 3. Mass determined to the nearest 0.1% of the total mass4. Loss of moisture avoided prior to determining the mass5. Sample dried by a suitable heat source6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass8. Moisture content calculated by: $\%$ moisture = $\frac{100}{1000}$ $\frac{100}{1000}$ $\frac{100}{1000}$ $\frac{100}{1000}$	#4 (4.75)	1.1 (500)			
3. Mass determined to the nearest 0.1% of the total mass 3. Mass determined to the nearest 0.1% of the total mass 4. Loss of moisture avoided prior to determining the mass 5. Sample dried by a suitable heat source 6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating 7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass 8. Moisture content calculated by: % moisture =	3% " (9.5)	3.3 (1,500)			
1" (25.0) 8.8 (4,000) 1 ½" (37.5) 13.2 (6,000) 3. Mass determined to the nearest 0.1% of the total mass	12.5) ½" (12.5)	4.4 (2,000)			
1 ½" (37.5) 13.2 (6,000) 3. Mass determined to the nearest 0.1% of the total mass	<i>³</i> ⁄₄" (19.0)	6.6 (3,000)	_		
 3. Mass determined to the nearest 0.1% of the total mass 4. Loss of moisture avoided prior to determining the mass 5. Sample dried by a suitable heat source 6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating 7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass 8. Moisture content calculated by: wet sample mass - dried sample mass x 100 	1" (25.0)	8.8 (4,000)	_		
 4. Loss of moisture avoided prior to determining the mass 5. Sample dried by a suitable heat source 6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating 7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass 8. Moisture content calculated by: % moisture = wet sample mass - dried sample mass x 100 	1 1/2" (37.5)	13.2 (6,000)			
 4. Loss of moisture avoided prior to determining the mass 5. Sample dried by a suitable heat source 6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating 7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass 8. Moisture content calculated by: % moisture = wet sample mass - dried sample mass x 100 					
 5. Sample dried by a suitable heat source 6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating 7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass 8. Moisture content calculated by: wet sample mass - dried sample mass x 100 	3. Mass determined to the nearest	0.1% of the total n	nass		
 6. If heated by means other than a controlled temperature oven, is sample stirred to avoid localized overheating 7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass 8. Moisture content calculated by: % moisture = wet sample mass - dried sample mass x 100 	4. Loss of moisture avoided prior to determining the mass				
stirred to avoid localized overheating	5. Sample dried by a suitable heat				
 7. Sample dried to constant mass and mass determined to nearest 0.1% of the total mass 8. Moisture content calculated by: % moisture = wet sample mass - dried sample mass x 100 	6. If heated by means other than a controlled temperature oven, is sample				
the total mass 8. Moisture content calculated by: % moisture = wet sample mass - dried sample mass x 100	stirred to avoid localized overheating				
8. Moisture content calculated by: % moisture = wet sample mass - dried sample mass x 100	7. Sample dried to constant mass and mass determined to nearest 0.1% of				
% moisture = $\frac{\text{wet sample mass} - \text{dried sample mass}}{100} \times 100$	the total mass				
% moisture = $\frac{\text{wet sample mass} - \text{dried sample mass}}{\text{dried sample mass}} \times 100$	8. Moisture content calculated by:				
% moisture = $\frac{1}{\text{dried sample mass}} \times 100$	wet sample mass - dried sample mass				
unou sampro mass	% moisture = X 100 dried sample mass				

PASS PASS

FAIL FAIL

Examiner:_____Date:_____



Materials Finer Than

No. 200 Sieve in Mineral Aggregates

by Washing

1

SCOPE

• This test washes the fine particles through the #200 (75 $\mu m)$ sieve to give an accurate determination of the minus #200 portion in a sample.

2

SIGNIFICANCE AND USE

• Material finer than the # 200 (75-um) sieve can be separated from larger particles much more efficiently and completely by wet sieving than through the use of dry sieving. Therefore, when accurate determinations of material finer than #200 in fine or coarse aggregate is desired, this test method should be used on the sample prior to dry sieving in accordance with AASHTO T 27.

3

EQUIPMENT

- •Oven capable of $230 \pm 9^{\circ}F$ (110 $\pm 5^{\circ}C$)
- •Scale, reads to 0.1% of the sample mass or better
- •Sieve **#200** Plus a
 - #8 sieve or a
 - **#16** sieve
- Suitable container
- Wetting agent
- for "Method B"
- Water
- Spoon

4

SAMPLING

- Sample the aggregate in accordance with AASHTO R 90 (ASTM D75).
- Thoroughly mix the sample of aggregate to be tested and reduce the quantity to an amount suitable for testing using the methods described in AASHTO R 76.
- The test specimen shall be a representative sample based on **AASHTO Table 1**.

5

4

5

AASHTO Table 1 – Sampl	e Mass Requirements	
Nominal Maximum Size	Minimum Weight of	
(NMAS), in.(mm)	Sample, grams	
#4 (4.75)	300	
3/8" (9.5)	1000	
3/4" (19.0)	2500	
1 ½" (37.5) or larger	5000	
 <u>Nominal Maximum Aggregate Size</u>; (NMAS) is defined as the smallest sieve which 100% of sample passes. 		
• Note: If the aggregate size is an in-between size just go to the next size on the chart for the amount ex: $\frac{1}{2}$ " you would go to 2500 grams.		

SAMPLE PREPARATION Method A

- Dry the test sample to a constant mass at $230 \pm 9^{\circ}F$ ($110 \pm 5^{\circ}C$) and determine the mass to the nearest 0.1 % of the mass of the test sample.
- Check the #200 sieve for damage before testing. (if damaged replace the sieve)

NOTE: Take care not to overload the #200 sieve during washing.

7

PROCEDURE

Method A

- 1. Place the sample into a washing pan/vessel suitable for heating in the oven.
- 2. Add water to cover the aggregate.

Optional Method B:

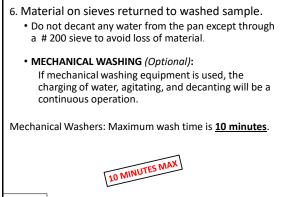
Add a small amount of wetting agent only once per sample during agitation.

3. Agitate the sample. (Use a spoon or similar tool to agitate the sample.)

8 8 8 8 8

9

7


8

4. Immediately pour the wash water through the nest of sieves avoiding the decantation of the coarser particles.

<u>Nest of sieves</u>: Is the use of two or more sieves stacked together. In this case the stack consist of two sieves. Use either a sieve size #8 or #16 placed on top of a #200 sieve. This will protect the delicate #200 sieve from damage while washing.

 Add another charge of water to the sample in the pan, agitate, decant the wash water through the nest of sieves as before. Repeat several times until the wash water is clear.

Procedure

Procedure

10

- 7. Oven dry the sample to a constant mass at a temperature of $230 \pm 9^{\circ}$ F (110 ± 5°C), weigh to the nearest 0.1 % of the original mass of the sample. **(Typically 1 gram)**
- 8. Calculate the loss and report the results.

Procedure

11

CALCULATIONS

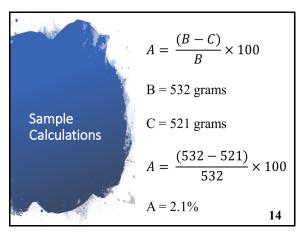
11

12

• Calculate the amount of material passing a # 200 sieve by washing as follows:

$$A = \frac{(B-C)}{B} \times 100$$

A = Total % passing #200 (75 μm) sieve
B = Original dry mass of sample (grams)
C = Dry mass of sample after washing and drying to constant mass (grams)


REPORTING

Report the percentage of material finer than the #200 sieve by washing to the nearest **0.1 % if the loss** is less than 10%.

Report the result to the nearest whole number if the loss is 10% or more.

13

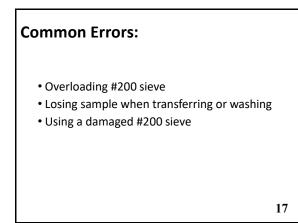
13

14

Classroom Exercise and Reporting Results

Determine the percent of minus #200 material and report the answer to the nearest 0.1% if less than 10%, to the nearest 1% if 10% or more:

Original dry weight (B) = 3171 g


Washed dry weight (C) = 2729 g

15

ANSWER

$$A = \frac{(B-C)}{B} \times 100$$

$$A = \frac{3171 - 2729}{3171} \times 100$$
Answer: A = 13.94
Reported: A = 14%

AASHTO T 11: Materials Finer Than No. 200 Sieve in Mineral **Aggregates by Washing**

PROFICIENCY CHECKLIST

Applicant _____

Employer _____

	Trial #	1	2
1.	Test sample dried to constant mass at $230 \pm 9^{\circ}F$ ($110 \pm 5^{\circ}C$).		
2.	Test sample allowed to cool and mass determined to 0.1%.		
3.	#200 sieve checked for damage. Cover the #200 with a #8 or #16 sieve.		
4.	Sample placed in a container and covered with water.		
5.	Wetting agent added. (optional)		
6.	Sample and contents of container vigorously agitated.		
	Note: Mechanical washers maximum time 10min of washing.		
7.	Wash water poured through the sieve nest.		
8.	Wash water free of coarse particles.		
9.	Operation continued until wash water is clear.		
	Material on sieves returned to washed sample.		
11.	Excess water decanted from washed sample only through the #200 sieve.		
	Washed aggregate dried to constant mass at $230 \pm 9^{\circ}F (110 \pm 5^{\circ}C)$.		
	Washed aggregate mass cooled and determined to 0.1%.		
14	Calculation: % less than $\#200 = \frac{\text{Orig.dry mass} - \text{Final dry mass}}{\text{Orig.1}} \times 100$		
1-7.	Orig. dry mass		

PASS PASS

FAIL FAIL

Examiner:_____ Date:_____

Sieve Analysis of Fine and Coarse Aggregates

1

SCOPE

- Sieve analysis of aggregate is used to determine compliance with design, production control requirements, and verification of specifications.
- According to AASHTO, either Cumulative or Non-Cumulative methods may be used.
- Analysis of aggregate extracted from asphalt mixtures is conducted in accordance with AASHTO T30 (Mechanical Analysis of Extracted Aggregate).

2

2

SIGNIFICANCE AND USE

- This method is used primarily to determine the grading of materials proposed for use as aggregates or being used as aggregates. The results are used to determine compliance of the particle size distribution with applicable specification requirements and to provide necessary data for control of the production of various aggregate products. The data may also be useful in developing relationships concerning porosity and packing.
- Accurate determination of material finer than the #200 sieve cannot be achieved by use of this method alone. Therefore, AASHTO T 11 for material finer than the #200 sieve by washing should be used.

EQUIPMENT

- Scale readable to 0.1% of the sample mass or better
- Sieves
- Brushes soft and stiff brushes
- Pans
- Oven- Capable of maintaining 230 ± 9°F (110 ± 5°C)
 A Hot Plate may be used

4

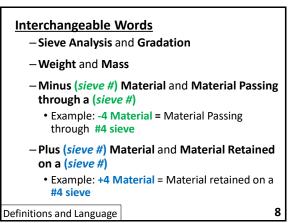
• Mechanical Shaker

- Check sieving thoroughness every 12 months or as needed throughout the year.
 - The timer will be calibrated/verified during this process.
- A Record of this verification will be kept in the lab's Quality Manual System (QMS).
- See appendix for AASHTO R 18 calibrating/verification process of mechanical sieve shakers.

Equipment

5

DEFINITIONS AND LANGUAGE


• Nominal Maximum Aggregate Size (NMAS)

 For AASHTO T 27 this is defined as the smallest sieve that the specification for the material being tested allows for 100% of the material to pass.

7

9

7

8

THREE THINGS TO KNOW BEFORE SIEVE ANALYSIS

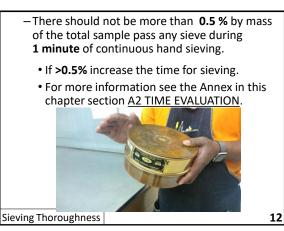
- 1. Sieve Condition
- 2. Check Sieving Thoroughness
- 3. Sieve Overloading

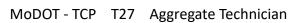
1. SIEVE CONDITION

- Check sieves for the following conditions prior to use.
- Large Holes
- Tears
- Unevenly spaced wires
- Cracks around rim
- Bowed screens
- Cleanliness
- Periodically examine finer mesh sieves against a backlight or white background for damaged openings or perimeter separations; use magnified viewing if needed.

10

- Wash finer sieves periodically per manufacturers instructions.
- Replace or repair any damaged sieves.


10


2. CHECK SIEVING THOROUGHNESS

- Use a snug fitting pan and cover to prevent sample loss.
- Strike side of sieve with heel of hand at a rate of 150 times per minute, turning about 1/6 turn every 25 strokes.

11

3. SIEVE OVERLOADING

- For sieves with openings smaller than #4, the quantity retained on any sieve at the completion of the sieving operation shall not exceed (4g/in²) of sieving surface area.
- For sieves with openings **#4 and greater**, the quantity retained in kg shall not exceed the product of:

2.5 X [sieve opening, mm x (effective sieving area, m²)] (This quantity is shown in AASHTO T27 Table 1)

See <u>Table 1</u> on the next slide for an example of allowable amounts on an 8"diameter sieve, and 14" square sieve. See ANNEX A1 at the end of this chapter for more information. **13**

13

AASHTO TABLE 1			
Maximum Alle	owable Quantity Of Mat	erial Retained*	
Sieve Opening Size	8" Diameter Sieve	12" Diameter Sieve	
2" (50 mm)	7.9 lbs (3.6 kg)	18.5 lbs. (8.4 kg)	
1½" (37.5 mm)	6.0 lbs (2.7 kg)	13.75 lbs. (6.3 kg)	
1" (25.0 mm)	4.0 lbs (1.8 kg)	9.25 lbs. (4.2 kg)	
3/4" (19.0 mm)	3.1 lbs (1.4 kg)	7.5 lbs. (3.2 kg)	
1/2" (12.5 mm)	2.0 lbs (0.89 kg)	4.7 lbs. (2.1 kg)	
3/8" (9.5 mm)	1.5 lbs (0.67 kg)	3.5 lbs. (1.6 kg)	
No. 4 (4.75 mm)	0.7 lbs (0.33 kg)	1.75 lbs. (0.8 kg)	
*Table 1 of the current AASHTO T 27 standard shows a complete table of different size sieves of the maximum allowable quantities of material retained on a sieve.			
Sieve Overloading		14	

14

- To <u>prevent</u> sieve overloading on an individual sieve, use one or more of the following methods:
 - -Insert additional sieves.
 - Split sample into two or more portions, sieve each portion individually and combine the portions retained on the sieve before calculating the percentage of the sample on the sieve.

15

 Use sieves having a larger frame size that provides a greater sieving area.

Sieve Overloading

SAMPLING

- Sample the aggregate in accordance with AASHTO R 90/ASTM D75.
- Thoroughly mix the sample and reduce to sample size using AASHTO R76.
- Use the Nominal Maximum Aggregate Size of the sample to determine the amount needed for testing from the MoDOT-EPG Chart on the next slide.

Note: The MoDOT-EPG Chart required amounts are different than that of AASHTO T 27.

16

16

MoDOT Sample Sizes for Aggregate Gradation Test Nominal Maximum Agg. Size Minimum Mass of Test Sample Ib. (g) 3/8" (9.5) 2.5 (1,000) 1/2" (12.5) 3.5 (1,500) 3/4" (19.0) 5.5 (2,500) 1" (25.0) 9 (4,000) 1 ½" (37.5) 13.5 (6,000) Dried Fine Aggregate, Minimum 500 grams. Found in the MODOT EPG Section 1001 17	MoDOT-EPG CHART		
Maximum Agg. Size Minimum Mass of in. (mm) Test Sample lb. (g) 3/8" (9.5) 2.5 (1,000) 1/2" (12.5) 3.5 (1,500) 3/4" (19.0) 5.5 (2,500) 1" (25.0) 9 (4,000) 1 ½" (37.5) 13.5 (6,000) Dried Fine Aggregate, Minimum 500 grams.	MoDOT Sample Sizes for Ag	gregate Gradation Test	
3/8" (9.5) 2.5 (1,000) 1/2" (12.5) 3.5 (1,500) 3/4" (19.0) 5.5 (2,500) 1" (25.0) 9 (4,000) 1 ½" (37.5) 13.5 (6,000) Dried Fine Aggregate, Minimum 500 grams.	Nominal Maximum Agg. Size		
1/2" (12.5) 3.5 (1,500) 3/4" (19.0) 5.5 (2,500) 1" (25.0) 9 (4,000) 1 ½" (37.5) 13.5 (6,000) Dried Fine Aggregate, Minimum 500 grams.	in. (mm)	Test Sample lb. (g)	
3/4" (19.0) 5.5 (2,500) 1" (25.0) 9 (4,000) 1 ½" (37.5) 13.5 (6,000) Dried Fine Aggregate, Minimum 500 grams.	3/8" (9.5)	2.5 (1,000)	
1" (25.0) 9 (4,000) 1 ½" (37.5) 13.5 (6,000) Dried Fine Aggregate, Minimum 500 grams.	1/2" (12.5)	3.5 (1,500)	
1 ½" (37.5) 13.5 (6,000) Dried Fine Aggregate, Minimum 500 grams.	3/4" (19.0)	5.5 (2,500)	
Dried Fine Aggregate, Minimum 500 grams.	1" (25.0)	9 (4,000)	
	1 ½" (37.5)	13.5 (6,000)	
Found in the MoDOT EPG Section 1001 17	Dried Fine Aggregate, Minimum 500 grams.		
	Found in the <u>MoDOT</u> EPG Section 1001 17		

17

SAMPLE PREPARATION

 Dry the reduced sample to a constant mass in an oven at 230 ± 9°F (110 ± 5°C). A hot plate can be used – fracturing of aggregates should be avoided.

19

20

- Perform AASHTO T 11 (Washing out the minus #200 fines from the sample).
- Dry the washed aggregate to a constant mass at $230 \pm 9^{\circ}F (110 \pm 5^{\circ}C).$
- Allow to cool.
- Weigh the washed dried sample and record the weight to the nearest gram.

Note: This weight will be called the "Washed Dry Mass" on your sieve analysis worksheet.

Procedure – AASHTO T 11

21

Procedure – Original Dry Mass 20 PERFORM AASHTO T 11 (Optional) NOTE: Test T 11 is an option but is generally used with T 27.

• Stack the sieves by assembling the required sieves in order of decreasing size.

sieves in order of decreasing size. •NOTE: Use of additional sieves may be added to prevent the required sieves from being overloaded.

22

• NOTE: For particles that are 3 inches and larger, use a Mechanical Screen-Shaker or Hand Sieve particles.

Procedure – Stacking Sieves

22

²³

Note: Always include the #200 sieve, even if T11 was performed.

Procedure – Loading Sieves

- Agitate and shake each sieve mechanically or by hand for a sufficient period, established by trial or checked by measurement on the actual test sample, to meet the criterion for adequacy of sieving.
- Sieving Criterion
 - Shake until ≤ 0.5% by mass of the total sample passes during 1 minute of continuous hand sieving.

Procedure - Agitation

25

 Mechanical Sieving: Place the stack of sieves in a Mechanical Shaker set at the calibrated/verified time. (Approximately 7-10 min)

26

calibrated/verified, Hand Sieve after agitation.

• If the timer was not

Procedure – Mechanical Agitation

26

Sieving by HAND: Shake until $\leq 0.5\%$ by mass of the total sample passes during 1 minute of

continuous hand sieving

NOTE: Do NOT force particles or manipulate them to go through the sieve openings.

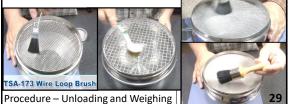
Procedure – Manual Agitation

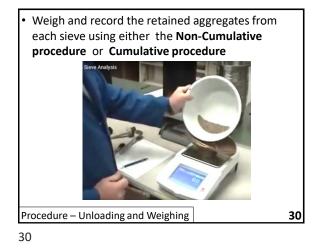
27

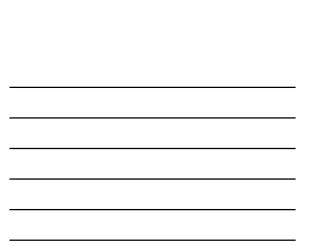
MoDOT - TCP T27 Aggregate Technician

Method used to <u>check</u> mechanical shakers and hand sieving:

- Tap side of sieve sharply with heel of hand 150 strokes/minute, rotating 1/6 turn every 25 strokes.
- − Shake until ≤ 0.5% by mass of the total sample passes during 1 minute of continuous hand sieving.


28


Procedure – Check for Sieving Thoroughness


28

- After agitating the sample, unload and weigh the retained material on each sieve.
- Start with the largest sieve from the top of the stack and unload the retained aggregates using the appropriate BRUSH to clean out

the sieves.

WEIGHING - Non - Cumulative Process

- Unload each sieve fraction separately into its own individual (tared) pan.
- Weigh each pan separately and write the weight next to the corresponding sieve size on the report.
- Record to nearest 0.1 % by total mass, typically 1 gram.

For The Minus #200

• Tare out a different pan and unload the minus #200 material from the pan from the sieve nest and record the weight.

31

31

WEIGHING - Cumulative Process

- Unload the material retained on the largest sieve into a tared pan and record the weight to the nearest 0.1% of the total mass, typically 1 gram.
- **Do not tare (zero) scale**, add material from next sieve into the same pan, record the combined weight.
- Repeat unloading and recording the combined weight until all sieves have been unloaded from the sieve stack into the same pan.

For The Minus #200

• Tare out a different pan and unload the minus #200 material from the pan from the sieve nest and record the weight.

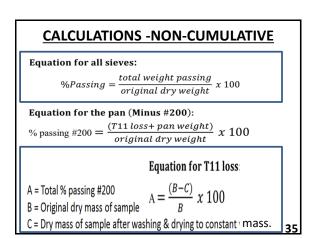
32

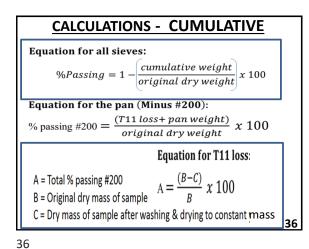
32

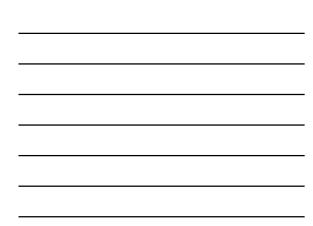
CALCULATE AND REPORT

Depending upon the form, the material tested and the specification, the report shall include one of the following:

- Total percentage of material passing each sieve.
- Total percentage of material retained on each sieve.
- Percentage of material retained between consecutive sieves.
- ✓ All values for the percent passing are reported to the nearest whole number for all sieves including material passing the (No. #200) sieve for values ≥ 10%.
- ✓ Material passing the (No. # 200) sieve for values less than 10%, reported to the nearest tenth (0.1)%. 33


SIEVING ACCURACY


 <u>MoDOT sieving accuracy</u>: Sieving accuracy tolerance for sieve analysis is ±1 gram per sieve used. This can be found in the MoDOT EPG.


We will use MODOT sieving accuracy for this certification.

 <u>AASHTO T 27 sieving accuracy</u>: The total mass of the material after sieving should check closely with the total original dry mass of the sample placed on the sieves. If the two amounts differ by more than 0.3%, based on the total original dry sample mass, the results should not be used for acceptance purposes.
 34

34

Calculation of the Fineness Modulus "FOR INFORMATION ONLY"

Calculate the fineness modulus, when required, by adding the total percentages of material in the sample that are coarser than each of the following sieves (cumulative percentages retained), and dividing the sum by 100; Sieves: #100, #50, #30, #16, #8, #4, # ¾, # ¾, # 1 ½, and larger, increasing the ratio of 2 to 1.

• Report the fineness modulus to the nearest 0.01%.

37

COMMON ERRORS

- Insufficient sample size.
- Overloading sieves.
- Loss of material when transferring from sieve to weighing pan.
- Insufficient cleaning of sieves.
- Using worn or cracked sieves.
- Sieving not thorough.
- Losing material performing AASHTO T 11. (washing minus #200) prior to gradation.

38

37

38

SIEVE ANALYSIS PRACTICE

PROBLEMS

*We will use Mo-DOT EPG sieving accuracy for this certification.

NOTE: At the end of the module you will find enlarged copies of the slides and blank practice sheets.


39

	Class Problem	1A
		Weighed
Class Problem 1A		Amounts, g
	Dry Original Mass (g):	
	(T11) Dry Washed Mass (g):	5195
Instruction and	37.5mm (1½")	
Practice	25mm (1")	0
	19mm (¾")	464
For	12.5mm (½")	2304
	9.5mm (3⁄8")	1162
Cumulative	4.75mm (#4)	1182
and	2.36mm (# 8)	53
	1.18mm (#16)	
Non-cumulative	600ųm (#30)	
Sieve Analysis	300ųm (#50)	
	150ųm (#100)	
	75ųm (#200)	26
	Pan	2

Non – Cumulative Process - Class Problem 1A					
Original Dry Mass:	(A) 5226	le .		larged	
(AASHTO T11) Dry Mass Washed:	5195	g	Fr	large	
Washing Loss (Minus #200)	31	g	2.		
Sieve Size	Indiv. Sieve Weight Retd. (g)		Weight Passing (g)		Reported % Passing
25mm (1")	0	A · 0 =	5226	<u>5226</u> x 100 =	100
19mm (%*)	464	5226 - 464 =	4762	$\frac{4762}{5226}$ x 100 =	91
12.5mm (½*)	2304	4762 · 2304 =	2458	<u>2458</u> 5226 x 100 =	47
9.5mm (%*)	1162	2458 · 1162 =	1296	<u>1296</u> x 100 =	25
4.75mm (#4)	1182	1296 · 1182 =	114	<u>114</u> 5226 x 100 =	2
2.36mm (#8)	53	114 - 53 =	61	<u>61</u> 5226 x 100 =	1
1.18mm (#16)					
600µm (#30)					
300µm (#50)					
300µm (#50)					
150µm (#100) 75µm (#200)	26	61 · 26 =	35		x
Pan (Minus #200)	2				x
Washing Loss (Minus #200)	31				X
Total (Minus #200)	33	= 2 + 31		$\frac{33}{5226}$ x 100 =	0.6
Total Weight Retained :	(B) 5224				41
Accuracy Check = (A-B) = Less than 1/sieve?	Yes	(5226-5224)	= 2 < 7		41

Non – Cumulative Process – Class Problem 1A					
	(1) 5226	1			
Original Dry Mass:		g	large	d	
(AASHTO T11) Dry Mass Washed:	5195	g	Enlarge		
Washing Loss:	31	g			
Sieve Size	Indiv. Sieve Weight Retd. (g)	Weight Passing (g)		Reported % Passing	
25mm (1")	0	5226		100%	
19mm (¾")	464	4762		91	
12.5mm (½")	2304	2458		47	
9.5mm (¾")	1162	1296		25	
4.75mm (#4)	1182	114		2	
2.36mm (#8)	53	61		1	
1.18mm (#16)					
600µm (#30)					
300µm (#50)					
300µm (#50)					
150µm (#100)					
75µm (#200)	26	35	X	X	
Pan (Minus #200)	2			X	
Washing Loss (Minus #200)]		X	
Total (Minus #200)			\rightarrow	0.6	
Total Weight Retained :	(B) 5224				
Accuracy Check = (A-B) = Less than 1/sieve?	Yes			42	

Cumulative Process – Class Problem 1A							
Original Dry Mass:	(A) 5226	8				arged	
(AASHTO T11) Dry Mass Washed:	5195	g			Enla	argeu	
Washing Loss (Minus #200)	31	8			Lin		
Sieve Size	Indiv. Sieve Weight Retd. (g)		Total Retained (g)		% Retained		Reported % Passing
25mm (1")	0		0		0		100
19mm (%)	464	0 + 464 =	464	464 5226 x 100	= 9	100 - 9 =	91
12.5mm (%)	2304	464 + 2304 =	2768	2768 5226 x 100	= 53	100 - 53 =	47
9.5mm (%)	1162	2768 + 1162 =	3930	3930 5226 x 100	= 75	100 - 75 =	25
4.75mm (#4)	1182	3930 + 1182 =	5112	5112 5226 x 100	= 98	100 - 98 =	2
2.36mm (#8)	53	5112 + 53 =	5165	5165 5226 x 100	99	100 - 99 =	1
1.18mm (#16)							
600µm (#30)							
300µm (#50)							
300µm (#50)							
150µm (#100) 75µm (#200)	26	5165 + 26 =	5191		x		x
Pan (Minus #200) Washing Loss (Minus #200)							X
Total (Minus #200)		= 2 + 31		33 5226 x 100		\rightarrow	0.6
Total Weight Retained :		= 33 + 5191		3220	-		
Accuracy Check = (A-B) = Less than 1/sieve?	Yes	(5226-522	4) = 2 < 7				

Cumulativ	Cumulative Process – Class Problem 1A				
Original Dry Mass:	(A) 5226	g			
(AASHTO T11) Dry Mass Washed:	5195	g	Enlarged	7	
Washing Loss:	31	g	Enlard		
Sieve Size	Indiv. Sieve Weight Retd. (g)	Total Retained (g)	% Retained	Reported % Passing	
25mm (1")		0	0	100	
19mm (¾")	464	464	9	91	
12.5mm (½*)	2304	2768	53	47	
9.5mm (½)	1162	3930	75	25	
4.75mm (#4)	1182	5112	98	2	
2.36mm (#8)	53	5165	99	1	
1.18mm (#16)			0	100	
600µm (#30)			0	100	
300µm (#50)			0 _	100	
300µm (#50)			0	100	
150µm (#100)			0	100	
75µm (#200)	26	5191	X	X	
Pan (Minus #200)	2			X	
Washing Loss (Minus #200)	31			X	
Total (Minus #20)	33		\rightarrow	0.6	
Total Weight Retained :	(B) 5224				
Accuracy Check = (A-B) = Less than 1/sieve?	Yes				

	Class Problem	2B
Class Problem 2B		Weighed
		Amounts, g
	Dry Original Mass (g):	5040
Work this	(T11) Dry Washed Mass (g):	4571
Gradation		
oradation	37.5mm (1½")	
Out	25mm (1")	
Cumulative	19mm (3⁄4")	0
	12.5mm (½")	1150
And Then	9.5mm (3⁄8")	
Non-cumulative	4.75mm (#4)	1700
Non-cumulative	2.36mm (# 8)	1275
	1.18mm (#16)	
	600ųт (#30)	
	300ųm (#50)	
	150ųm (#100)	
	75ųm (#200)	398
	Pan	44

Dry Original Mass (g):		lass Problem 2B	2B
(T11) Dry Washed Mass (g):	4571	the en	d of moutile
Washing Loss (g):	469	(A) arged copy at the en	
	Indiv. Sieve	weight	Reported
Sieve Size	Wt. Retained (g)	Passing (g)	% Passing
37.5mm (1½")			
25mm (1")			
19mm (¾")	0	5040	100
12.5mm (½")	1150	3890	77
9.5mm (%")			
4.75mm (#4)	1700	2190	43
2.36mm (# 8)	1275	915	18
1.18mm (#16)			
600ųm (#30)			
300ųm (#50)			
150ųm (#100)			
75ųm (#200)	398		
Pan	44		
Washing Loss (g):			% Passing -200
Total Minus #200	513		10
Total Weight Retained:	5036	(B)	
Modot Accuracy Check = (A-	-B) = Less than 1	/sieve? 5040 - 5036	=4 4 < 5 = yes 46

	CUMULATIVE CL4	ASS PROBLEM – 2B	. 10 . 20
Dry Original Mass (g):	5040	(A)	and of module 2B
(T11) Dry Washed Mass (g):	4571	d copy at the	ena
Washing Loss (g):	469	ASS PROBLEM - 2B (A) Enlarged copy at the	
	Cumulative wt.		Reported
Sieve Size	Retained (g)	% Retained	% Passing
37.5mm (1½")			
25mm (1")			
19mm (¾")	0	0	100
12.5mm (½")	1150	23	77
9.5mm (%")			
4.75mm (#4)	2850	57	43
2.36mm (# 8)	4125	82	18
1.18mm (#16)			
600ųm (#30)			
300ym (#50)			
150ųm (#100)			
75ųm (#200)	4523		
Pan	44		
Washing Loss (g):	469]	% Passing -200
=Total Minus #200	513		10
Total Weight Retained:		(B)	
Modot Accuracy Check = (A	-B) = Less than 1	/sieve? 5040 - 5036 =	⁴ 4 < 5 = yes 47

Fine Gradation	CLASS PROBLEM:	ЗA
Class Problem 3A		FINE Agg
Class Problem 3A		Weighed
		Amounts, g
Complete the sieve	Dry Original Mass (g):	526
analysis on the blank	(T11) Dry Washed Mass (g):	520
worksheet provided	37.5mm (1½")	
using the weights listed	25mm (1")	
here.	19mm (¾")	
You may choose either	12.5mm (½")	
Cumulative	9.5mm (3⁄8")	0
or	4.75mm (#4)	25
÷.	2.36mm (# 8)	60
Non-cumulative	1.18mm (#16)	209
method.	600ųm (#30)	168
When you are finished	300ųm (#50)	40
the instructor will	150ųm (#100)	13
check it.	75ųm (#200)	2
S. CON TO	Pan	1 48

CL	JMULATIVE - Pro	olem 1A	Updated 10/14/2020
Dry Original Mass (g):	5226 (A)	_	
(T11) Dry Washed Mass (g):	5195		
Washing Loss (g):	31	_	
		1	
	Cumulative wt.		
Sieve Size	Retained (g)	% Retained	% Passing
37.5mm (1½")			
25mm (1")	0	0	100
19mm (¾")	0 +464 = 464	(464/5226) × 100 = 9	100- 9 = 91
12.5mm (½")	464+ 2304 = 2768	(2768/5226) × 100=53	100- 53 = 47
9.5mm (¾")	2768+ 1162 = 3930	(3930/5226) × 100 = 75	100- 75 = 25
4.75mm (#4)	5112	98	100 - 98 = 2
2.36mm (# 8)	5165	99	1
1.18mm (#16)			
600ųm (#30)			
300ųm (#50)			
150ųm (#100)			
75ųm (#200)	5165 + 26 = 5191		
Pan (#200):	2		
+ Washing Loss (#200):	31		% Passing -200
= Total Minus (#200):	33		(33 /A)*100=0.6
Total Weight Retained:	5224 (B)	Also add Total -200	0.6

	NON-CUMULAT	TIVE - Problem 1A	
Dry Original Mass (g):	5226 (A)	_	
(T11) Dry Washed Mass (g):	5195	1 8	
Washing Loss (g):	31	~	
	Indiv. Sieve		
Sieve Size	Wt. Retained (g)		% Passing
37.5mm (1½")			
25mm (1")	0	A - <mark>0</mark> = 5226	(5226/5226) × 100 =100
19mm (¾")	464	5226-464=4762	(4762/5226) × 100 = 91
12.5mm (½")	2304	4762-2304 = 2458	(2458/5226) × 100 = 47
9.5mm (¾")	1162	2458 -1162= 1296	(1296/5226) × 100 = 25
4.75mm (#4)	1182	114	2
2.36mm (# 8)	53	61	1
1.18mm (#16)			
600ųm (#30)			
300ųm (#50)			
150ųm (#100)			
75ųm (#200)	26		
Pan (#200):	2		
+ Washing Loss (#200):	31		% Passing -200
= Total Minus (#200):	33		(33 /A)*100=0.6
Total Weight Retained:	5224 (B)	Also add Total -200	0.6

Non – Cumulative Process - Class Problem 1A								
Original Dry Mass:	(A) 5226	lg		1 - roel	d			
(AASHTO T11) Dry Mass Washed:	5195	g	Fn	large				
Washing Loss (Minus #200)	31	g						
Sieve Size	Indiv. Sieve Weight Retd. (g)		Weight Passing (g)			Reported % Passing		
25mm (1")	0	A - 0 =	5226	5226 5226	x 100 =	100		
19mm (¾")	464	5226 - 464 =	4762	<u>4762</u> 5226	x 100 =	91		
12.5mm (½")	2304	4762 - 2304 =	2458	2458 5226	x 100 =	47		
9.5mm (*/*")	1162	2458 - 1162 =	1296	<u>1296</u> 5226	x 100 =	25		
4.75mm (#4)	1182	1296 - 1182 =	114	<u>114</u> 5226	x 100 =	2		
2.36mm (#8)	53	114 - 53 =	61	<u>61</u> 5226	x 100 =	1		
1.18mm (#16)								
600µm (#30)								
300µm (#50)								
300µm (#50)								
150µm (#100)								
75µm (#200)	26	61 - 26 =	35			х		
Pan (Minus #200)	2					X		
Washing Loss (Minus #200)	31					X		
Total (Minus #200)	33	= 2 + 31		<u>33</u> 5226	x 100 =	0.6		
Total Weight Retained :	(B) 5224							
Accuracy Check = (A-B) = Less than 1/sieve?	Yes	(5226-5224)	= 2 < 7					

– Cumulative Process - Class Problem 1A

Non – Cumulative Process – Class Problem 1A

Original Dry Mass	(A) 5226	g	large	d
(AASHTO T11) Dry Mass Washed:	5195	g	Enlarge	
Washing Loss	31	g		
Sieve Size	Indiv. Sieve Weight Retd.			Reported
	(g)	(g)		% Passing
25mm (1")		5226		100%
19mm (¾")		4762		91
12.5mm (½")	2304	2458		47
9.5mm (¾)	1162	1296		25
4.75mm (#4)	1182	114		2
2.36mm (#8)	53	61		1
1.18mm (#16))			
600µm (#30))			
300µm (#50)				
300µm (#50)				
150µm (#100))			
75µm (#200)	26	35	X	Х
Pan (Minus #200)	2			Х
Washing Loss (Minus #200)	31]		х
Total (Minus #200	33	1		0.6
Total Weight Retained :	(B) 5224			
Accuracy Check = (A-B) = Less than 1/sieve?	Yes	1		

Cumulative Process – Class Problem 1A								
Original Dry Mass:	(A) 5226	g					and	
(AASHTO T11) Dry Mass Washed:	5195	g				Enla	rged	
Washing Loss (Minus #200)	31	g				EIII		
Sieve Size	Indiv. Sieve Weight Retd. (g)		Total Retained (g)			% Retained		Reported % Passing
25mm (1")	0		0			0		100
19mm (¾*)	464	0 + 464 =	464	464 5226	x 100 =	9	100 – 9 =	91
12.5mm (½")	2304	464 + 2304 =	2768	<u>2768</u> 5226	x 100 =	53	100 - 53 =	47
9.5mm (¾")	1162	2768 + 1162 =	3930	<u>3930</u> 5226	x 100 =	75	100 - 75 =	25
4.75mm (#4)	1182	3930 + 1182 =	5112	<u>5112</u> 5226	x 100 =	98	100 - 98 =	2
2.36mm (#8)	53	5112 + 53 =	5165	<u>5165</u> 5226	x 100 =	99	100 - 99 =	1
1.18mm (#16)								
600µm (#30)								
300µm (#50)								
300µm (#50)								
150µm (#100)								
75µm (#200)	26	5165 + 26 =	5191			х		х
Pan (Minus #200)								х
Washing Loss (Minus #200)	31							х
Total (Minus #200)	33	= 2 + 31		<u>33</u> 5226	x 100 =		\rightarrow	0.6
Total Weight Retained :	(B) 5224	= 33 + 5191						(
Accuracy Check = (A-B) = Less than 1/sieve?	Yes	(5226-522	4) = 2 < 7					

Cumulative Process – Class Problem 1A							
Original Dry Mass	(A) 5226	g					
(AASHTO T11) Dry Mass Washed:	5195	g	Enlarged	1			
Washing Loss	31	g	Ellicard				
Sieve Size	Indiv. Sieve Weight Retd. (g)	Total Retained (g)	% Retained	Reported % Passing			
25mm (1")	0	0	0	100			
19mm (¾")	464	464	9	91			
12.5mm (½")	2304	2768	53	47			
9.5mm (*/s")	1162	3930	75	25			
4.75mm (#4)	1182	5112	98	2			
2.36mm (#8)	53	5165	99	1			
1.18mm (#16)			o	100			
600µm (#30)			0	100			
300µm (#50)			o	100			
300µm (#50)				100			
150µm (#100)			0	100			
75µm (#200)	26	5191	X	Х			
Pan (Minus #200)	2			Х			
Washing Loss (Minus #200)	31			Х			
Total (Minus #20)	33			0.6			
Total Weight Retained :	(B) 5224]					
Accuracy Check = (A-B) = Less than 1/sieve?	Yes]					

AASHTO T27

Aggregate Technician

26 95 1 Sieve t Retd. g) 0 54 62 82 3 3 6 2 1 3 2 2 4 2 5 4 6 2 1 3 3 2 2 4 2 5 1 3 3 2 2 4 2 5 1 5 4 6 2 1 3 3 2 2 4 5 5 1 5 4 6 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$A \cdot 0 =$ 5226 \cdot 46 4762 \cdot 230 2458 \cdot 116 1296 \cdot 118 114 \cdot 53 61 \cdot 26 = 2 + 31 (5226-52) (5226-52)	4 = 32 = 32 = = = 224)	Weight Passing (g) 5226 4762 2458 1296 114 61 35	5226 5226 4762 5226 2458 5226 1296 5226 114 5226 61 5226 61 5226	- x 100 = - x 100 = - x 100 = - x 100 = - x 100 =	100 = 91 = 47 = 25 = 2 = 1 x x x x
1 Sieve t Retd. g)) 54 04 62 82 3 3 6 6 2 1 3 2 24 25 nulativ	$\begin{array}{c} \mathbf{A} \cdot 0 = \\ 5226 \cdot 46 \\ 4762 \cdot 230 \\ 2458 \cdot 116 \\ 1296 \cdot 118 \\ 114 \cdot 53 \\ \hline \\ 61 \cdot 26 \\ \hline \\ = 2 + 31 \\ \hline \\ \mathbf{(5226-52)} \\ \mathbf{e} \operatorname{Process} - \end{array}$	4 = 32 = 32 = = = 224)	Weight Passing (g) 5226 4762 2458 1296 114 61 35 35	<u>5226</u> 5226 2458 5226 1296 5226 114 5226 61 5226 61 5226	- x 100 = - x 100 = - x 100 = - x 100 = - x 100 =	% Passing = 100 = 91 = 47 = 25 = 2 = 1
Sieve f Retd. g) 54 04 62 82 3 6 2 1 3 224 es nulativ	$A \cdot 0 = 5226 \cdot 46$ $4762 \cdot 230$ $2458 \cdot 116$ $1296 \cdot 118$ $114 \cdot 53$ $61 \cdot 26$ $= 2 + 31$ $(5226-52)$ We Process -	4 = 32 = 32 = = = 224)	Passing (g) 5226 4762 2458 1296 114 61 35 35	5226 4762 5226 2458 5226 1296 5226 114 5226 61 5226 	- x 100 = - x 100 = - x 100 = - x 100 =	% Passing = 100 = 91 = 47 = 25 = 2 = 1
a a b a b a b a b a b c <td< td=""><td>$A \cdot 0 =$ 5226 \cdot 46 4762 \cdot 230 2458 \cdot 116 1296 \cdot 118 114 \cdot 53 61 \cdot 26 = 2 + 31 (5226-52) (5226-52)</td><td>4 = 32 = 32 = = = 224)</td><td>Passing (g) 5226 4762 2458 1296 114 61 35 35</td><td>5226 4762 5226 2458 5226 1296 5226 114 5226 61 5226 </td><td>- x 100 = - x 100 = - x 100 = - x 100 =</td><td>% Passing = 100 = 91 = 47 = 25 = 2 = 1 </td></td<>	$A \cdot 0 =$ 5226 \cdot 46 4762 \cdot 230 2458 \cdot 116 1296 \cdot 118 114 \cdot 53 61 \cdot 26 = 2 + 31 (5226-52) (5226-52)	4 = 32 = 32 = = = 224)	Passing (g) 5226 4762 2458 1296 114 61 35 35	5226 4762 5226 2458 5226 1296 5226 114 5226 61 5226 	- x 100 = - x 100 = - x 100 = - x 100 =	% Passing = 100 = 91 = 47 = 25 = 2 = 1
64 62 82 3 6 2 1 3 224 25 nulativ	$5226 \cdot 46$ $4762 \cdot 230$ $2458 \cdot 110$ $1296 \cdot 118$ $114 \cdot 53$ $61 \cdot 26$ $= 2 + 31$ $(5226-52)$ We Process -	4 = 32 = 32 = = = 224)	4762 2458 1296 114 61 35 = 2 < 7	5226 4762 5226 2458 5226 1296 5226 114 5226 61 5226 	- x 100 = - x 100 = - x 100 = - x 100 =	100 = 91 = 47 = 25 = 2 = 1 x x x x
04 62 82 3 6 2 1 3 224 25 nulativ	$4762 \cdot 230$ $2458 \cdot 116$ $1296 \cdot 118$ $114 \cdot 53$ $61 \cdot 26$ $= 2 + 31$ $(5226-52)$ $Te Process - 52$	04 = 52 = 52 = = = 224)	2458 1296 114 61 35 = 2 < 7	5226 2458 5226 1296 5226 114 5226 61 5226	- x 100 = - x 100 = - x 100 =	= 47 = 25 = 2 = 1
62 82 3 6 2 1 3 224 25 nulativ	2458 - 110 1296 - 118 114 - 53 61 - 26 = 2 + 31 (5226-52 Ve Process -	52 = 52 = = = 224)	1296 114 61 35 = 2 < 7	5226 1296 5226 114 5226 61 5226 	- x 100 = - x 100 =	= 25 = 2 = 1
82 3 6 2 1 3 224 25 nulativ	$1296 \cdot 118$ $114 \cdot 53$ $61 \cdot 26$ $= 2 + 31$ $(5226-52)$ $re Process - 52$	32 = = = 224)	114 61 35 = 2 < 7	5226 114 5226 61 5226 	- x 100 =	= 2 = 1
3 6 2 1 3 2 2 4 2 5 nulativ	114 - 53 61 - 26 = 2 + 31 (5226-52 /e Process -	=	61 35 = 2 < 7	5226 61 5226 	- x 100 -	= 1
6 2 1 3 224 25 nulativ	61 - 26 = 2 + 31 (5226-52 /e Process -	=	35 = 2 < 7	<u> </u>		X X X X
2 1 3 224 25 nulativ	= 2 + 31 (5226-52 /e Process -	224)	= 2 < 7	5226	- x 100 =	X X
2 1 3 224 25 nulativ	= 2 + 31 (5226-52 /e Process -	224)	= 2 < 7	5226	- x 100 =	X X
2 1 3 224 25 nulativ	= 2 + 31 (5226-52 /e Process -	224)	= 2 < 7	5226	- x 100 =	X X
2 1 3 224 25 nulativ	= 2 + 31 (5226-52 /e Process -	224)	= 2 < 7	5226	- x 100 =	X X
2 1 3 224 25 nulativ	= 2 + 31 (5226-52 /e Process -	224)	= 2 < 7	5226	- x 100 =	X X
1 3 224 es nulativ] (5226-52 /e Process -			5226	- x 100 =	X
3 224 es nulativ] (5226-52 /e Process -			5226	- x 100 =	= 0.6
24 s nulativ] (5226-52 /e Process -					
es nulativ	/e Process -			A		
nulativ	/e Process -			Ą		
		- Clas	s Problem 1	A		
	5195	g		Enla	rged	
:	31	g				
	iv. Sieve ght Retd.		Weight Passing (g)			Reported % Passing
						100%
						91
	and the second se		and the second			47
	and the second se		the second s			25
						2
	and the second sec		the second state of the se			1
the second day in the second day is a second day of the second day	55		V1			-
	and the second sec					
-			_			
and the second se						CONTRACT OF A STREET
	26		35	v		X
			55	А		X
					-	X
and the second diversion of th						0.6
(B)	5224					
) (B)	464 2304 1162 1182 53 53 53 20 210 22 31 33	0 0 0 464 0 2304 0 1162 0 1182 0 53 0 53 0 0 0 26 0 26 0 31 0 33	0 0 5226 0 464 4762 0 2304 2458 0 1162 1296 0 1182 114 0 53 61 0	0 0 5226 0 464 4762 0 2304 2458 0 1162 1296 0 1182 114 0 53 61 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Original Dry Mass (AASHTO T11) Dry Mass Washed:		g g			Fnla	rged	
Washing Loss (Minus #200)	31	g			L		
Sieve Size	Indiv. Sieve Weight Retd. (g)		Total Retained (g)		% Retained		Reported % Passing
25mm (1")	0		0		0		100
19mm (¾*)	464	0 + 464 =	464	$\frac{464}{5226}$ x 100 =	8.9	100 - 8.9 =	91
12.5mm (35")	2304	464 + 2304 =	2768	$\frac{2768}{5226}$ x 100 =	53.0	100 - 53.0 =	47
9.5mm (¾")	1162	2768 + 1162 =	3930	$\frac{3930}{5226}$ x 100 =	75.2	100 · 75.2 =	25
4.75mm (#4)	1182	3930 + 1182 =	5112	$\frac{5112}{5226}$ x 100 =	97.8	100 - 97.8 =	2
2.36mm (#8)	53	5112 + 53 =	5165	$\frac{5165}{5226}$ x 100 =	98.8	100 · 98.8 =	1
1.18mm (#16)							
600µm (#30)							
300µm (#50)							
300µm (#50)							
150µm (#100)							
75µm (#200)	26	5165 + 26 =	5191		x		X
Pan (Minus #200)	2					ļ	X
Washing Loss (Minus #200)	31					ļ	X
Total (Minus #200))	33	= 2 + 31		$\frac{33}{5226}$ x 100 =		→	0.6
Total Weight Retained :	(B) 5224	= 33 + 5191				-	

Original Dry Mass:	(A) 5226	g		
(AASHTO T11) Dry Mass Washed:	5195	g	Enlarged	λ.
Washing Loss:	31	g	Litte	
	Indiv. Sieve	Total		-
Sieve Size	Weight Retd.	Retained		Reported
	(g)	(g)	% Retained	% Passing
25mm (1")	0	0	0	100
19mm (¾")	464	464	8.9	91
12.5mm (½*)	2304	2768	53.0	47
9.5mm (½*)	1162	3930	75.2	25
4.75mm (#4)	1182	5112	97.8	2
2.36mm (#8)	53	5165	98.8	1
1.18mm (#16)			0.0	100
600µm (#30)			0.0	100
300µm (#50)			0.0	100
300µm (#50)		_	0.0	100
150µm (#100)			0.0	100
75µm (#200)	26	5191	X	X
Pan (Minus #200)				X
Washing Loss (Minus #200)	31			X
Total (Minus #20)	New property and in the second s	the second s		0.6
Total Weight Retained :	and a state of the			
				44

.

CUMULATIVE CI	ass Problem 2B	A	NSWERS – 2B
Dry Original Mass (g):	5040	(A)	
(T11) Dry Washed Mass (g):	4571	-	
Washing Loss (g):	469	-	
		(81)	
	Cumulative wt.		
Sieve Size	Retained (g)	% Retained	% Passing
37.5mm (1½")			
25mm (1")			
19mm (¾")	0	0	100
12.5mm (½")	1150	23	77
9.5mm (¾")			
4.75mm (#4)	2850	57	43
2.36mm (# 8)	4125	82	18
1.18mm (#16)			
600ųm (#30)			
300ųm (#50)			
150ųm (#100)			
75ym (#200)	4523		
Pan	44		
Washing Loss (g)	469		
Total Minus #200	513		
Total Weight Retained:	5036	(B)	% Passing -200
			10

MoDOT Accuracy Check = (A-B) = Less than 1/sieve? 5040 - 5036 = 4 4 < 5 = YES

(A-b) = Less that			
· · · · · · · · · · · · · · · · · · ·	ILATIVE Class P		
Dry Original Mass (g):		_ (A)	
(T11) Dry Washed Mass (g):		_	
Washing Loss (g):	469	_	
			6
	Individual Sieve wt.	Wt. passing	
Sieve Size	Retained (g)		% Passing
37.5mm (1½")			
25mm (1")			
19mm (¾")	0	5040	100
12.5mm (½")	1150	3890	77
9.5mm (³ / ₈ ")			
4.75mm (#4)	1700	2190	43
2.36mm (# 8)	1275	915	18
1.18mm (#16)			
600ųm (#30)			
300ųm (#50)			
150ųm (#100)			
75ųm (#200)	398		
Pan	44		
Washing Loss (g)	469		
Total Minus #200	513		
Total Weight Retained:	5036	(B)	% Passing -200
			10

AASHTO T27	ANNEX A (NEW)	09/22/2020
8.2.	Select sieves with suitable openings to furnish the information required by covering the material to be tested. Use additional sieves as desired or nece information, such as fineness modulus, or to regulate the amount of mater requirements of Annex A1. Nest the sieves in order of decreasing size of bottom and place the sample, or portion of the sample if it is to be sieved increment, on the top sieve. Agitate the sieves by hand or by mechanical a period, established by trial or checked by measurement on the actual test s criterion for adequacy of sieving described in Annex A2.	essary to provide other rial on a sieve to meet the opening from top to in more than one apparatus for a sufficient
8.3.	Limit the quantity of material on a given sieve so that all particles have op openings a number of times during the sieving operation.	pportunity to reach sieve
8.3.1.	Prevent an overload of material on an individual sieve as described in Ta combination of the following methods:	ble Al by one or a
8.4.	Unless a mechanical sieve shaker is used, hand sieve particles retained on the determining the smallest sieve opening through which each particle will pass particles, if necessary, in order to determine whether they will pass through however, do not force particles to pass through an opening.	ss by rotating the
8.5.	Determine the mass of each size increment on a scale or balance conforming specified in Section 6.1 to the nearest 0.1 percent of the total original dry sat mass of the material after sieving should check closely with the total original sample placed on the sieves. If the two amounts differ by more than 0.3 perc original dry sample mass, the results should not be used for acceptance purp	mple mass. The total al dry mass of the cent, based on the total
ANNEX	٨	

A
(Mandatory Information)
OVERLOAD DETERMINATION
Do not exceed a mass of 7 kg/m^2 (4 g/in ²) of sieving surface for sieves with openings smaller than 4.75 mm (No. 4) at the completion of the sieving operation.
Do not exceed a mass in kilograms of the product of 2.5 × (sieve opening in mm) × (effective sieving area) for sieves with openings 4.75 mm (No. 4) and larger. This mass is shown in Table A1.1 for five sieve-frame dimensions in common use. Do not cause permanent deformation of the sieve cloth due to overloading.
Note A1—The 7 kg/m ² (4 g/in. ²) amounts to 200 g for the usual 203-mm (8-in.) diameter sieve [with effective or clear sieving surface diameter of 190.5 mm (7 $^{1}/_{2}$ in.)] or 450 g for a 305-mm (12-in.) diameter sieve [with effective or clear sieving surface diameter of 292.1 mm (11 $^{1}/_{2}$ in.)]. The amount of material retained on a sieve may be regulated by: (1) the introduction of a sieve

TS-1c

with larger openings immediately above the given sieve, (2) testing the sample in multiple increments, or (3) testing the sample over a nest of sieves with a larger sieve-frame dimension.

Table A3.1-Maximum	Allowable Mass of Materia	I Retained on a Sieve, kg
--------------------	---------------------------	---------------------------

		Nomi	nal Dimensions of	Sieve		
Sieve Opening Size	203.2 mm, dia ⁶	254 mm, dia ⁶	304.8 mm, dia ⁶	350 by 350, mm	372 by 580 mm	
	Sieving Area, m ²					
	0.0285	0.0457	0.0670	0.1225	0.2158	
125 mm (5 in.)	e	æ	c	e	67.4	
100 mm (4 in.)	4	æ	e	30.6	53.9	
90 mm (31/2 in.)	2	4	15.1	27.6	48.5	
75 mm (3 in.)	e .	8.6	12.6	23.0	40.5	
63 mm (21/2 in.)	e	7.2	10.6	19.3	34.0	
50 mm (2 in.)	3.6	5.7	8.4	15.3	27.0	
37.5 mm (11/2 in.)	2.7	4.3	6.3	11.5	20.2	
25.0 mm (1 in.)	1.8	2.9	4.2	7.7	13.5	
19.0 mm (1/4 in.)	1.4	2.2	3.2	5.8	10.2	
12.5 mm (1/2 in.)	0.89	1.4	2.1	3.8	6.7	
9.5 mm (% in.)	0.67	1.1	1.6	2.9	5.1	
4.75 mm (No. 4)	0.33	0.54	0.80	1.5	2.6	

Sieve-frame dimensions in inch units: 2.0-in. diameter, 10.0-in. diameter, 12.0-in. diameter, 13.2 by 13.8 in. (14 by 14 in. nominal); 14.6 by 22.2 in. (16 by 24 in. nominal).

⁸ The sieve area for round sieves is based on an effective or clear diameter of 12.7 mm (½ in.) less than the nominal frame diameter because ASTM E11 permits the sealer between the sieve cloth and the frame to extend 6.35 mm (½ in.) over the sieve cloth. Thus, the effective or clear sieving diameter for a 20.2-mm (8.0-in.) diameter sieve frame is 190.5 mm (½ in.). Sieves produced by some noninfacturers do not infininge on the sieve cloth by the full 6.35 mm (½ in.).

Sieves indicated have less than five full openings and should not be used for sieve testing.

A2.	TIME EVALUATION
A2.1.	The minimum time requirement shall be evaluated for each shaker at least annually by the following method:
A2.1.1.	Shake the sample over nested sieves for approximately 10 min.
	Note A2—If the sample material may be prone to degradation, reduce the initial shaking time in Section A2.1.1 to 5 min, and begin each recheck with a new sample.
A2.1.2.	Provide a snug-fitting pan and cover for each sieve and hold the items in a slightly inclined position in one hand.
A2.1.3.	Hand-shake each sieve continuously for 60 s by striking the side of the sieve sharply and with an upward motion against the heel of the other hand at the rate of about 150 times per min, turning the sieve about one sixth of a revolution at intervals of about 25 strokes.
A2.2.	If more than 0.5 percent by mass of the total sample before sieving passes any sieve after one minute of continuous hand sieving, adjust the shaker time and repeat Section A2.1.
A2.3.	In determining sieving time for sieve sizes larger than 4.75 mm (No. 4), limit the material on the sieve to a single layer of particles.
A2.4.	If the size of the mounted testing sieves makes the described sieving motion impractical, use 203-mm (8-in.) diameter sieves to verify the adequacy of sieving.

TS-1c

T 27-8

AASHTO

© 2020 by the American Association of State Highway and Transportation Officials. All rights reserved. Duplication is a violation of applicable law. ANNEX A (NEW)

A2.5. If the mass retained on any sieve exceeds the maximum allowable mass per Table A1.1, select a different sample and repeat Section A2.

¹ Similar but not identical to ASTM C136-06.

r 4

Equipment Checked: MECHANICAL SHAKERS

Purpose:

This method provides instructions for checking the sieving thoroughness and time required to sieve a sample.

Equipment Required:

- Stopwatch readable to 0.1s
- 2. Balance, readable to 0.1g
- 3. Appropriate sieves, pans, lids

Tolerance:

Equipment shall meet the sieving thoroughness specified in the applicable test method(s).

Procedure:

- 1. Obtain a well graded sample that covers the range of sieves to be used in the mechanical shaker.
- 2. Starting at the lower end of the estimated sieving time, run the mechanical shaker.
- 3. Conduct a hand check on each sieve in the stack for sieving sufficiency as follows:
 - a. Hold the individual sieve, provided with a snug-fitting pan and cover, in a slightly inclined position in one hand.
 - b. Strike the side of the sieve sharply and, with an upward motion against the heel of the other hand at the rate of about 150 times per minute, turn the sieve about one-sixth of a revolution at intervals of about 25 strokes.
 - c. In determining the sufficiency of sieving for sizes larger than the No 4. sieve, limit the material on the sieve to a single layer of particles. If the size of the mounted testing sieves makes the described motion impractical, use 8-inch diameter sieves to verify the sufficiency of sieving.
- 4. Determine the sieving sufficiency according the applicable test method(s).
- 5. Repeat the sieving and sufficiency check procedure for at least two more sieving times.
- 6. The first sieving time the sufficiency check meets the tolerance should be noted as the standard sieving time for your mechanic shaker.

Considerations:

- 1. Certain test methods note that excessive sieve time (more than 10 minutes) to adequate sieving can result in degradation of the sample.
- 2. Different aggregate hardness or aggregate angularity may require different sieving times with a mechanical shaker to avoid sample degradation. Additional checks may be required using the different types encountered by the laboratory. (required if complying with C1077)
- **3.** Overloading individual sieves with too much material during the check will result in erroneous results.

AASHTO T27

Dry Original Mass (g): (T11) Dry Washed Mass (g): Washing Loss (g):	· · · · · · · · · · · · · · · · · · ·	(A)	
	Individual Sieve		
Sieve Size	Weight Retd. (g)		% Passing
37.5mm (1½")			
25mm (1")			
19mm (³ / ₄ ")			
12.5mm (½")			
9.5mm (³ / ₈ ")			
4.75mm (#4)			
2.36mm (# 8)			
1.18mm (#16)			
600ųm (#30)			
300ųm (#50)			
150ųm (#100)			
75ųm (#200)			
Pan			
Washing Loss (g)			\% Passing -200
Total Minus #200			
Total Weight Retained:		(B)	

MoDOT Accuracy Check = (A-B) = Less than 1/sieve?

Dry Original Mass (g): (T11) Dry Washed Mass (g): Washing Loss (g):		(A)	
	Individual Sieve		
Sieve Size	Weight Retd. (g)		% Passing
37.5mm (1½")			
25mm (1")			
19mm (¾")			
12.5mm (½")			
9.5mm (¾")			
4.75mm (#4)			
2.36mm (# 8)			
1.18mm (#16)			
600ųm (#30)			
300ųm (#50)			
150ųm (#100)			
75ųm (#200)			
Pan			
Washing Loss (g)			\% Passing -200
Total Minus #200			
Total Weight Retained:		(B)	

MoDOT Accuracy Check = (A-B) = Less than 1/sieve?

Dry Original Mass (g): (T11) Dry Washed Mass (g): Washing Loss (g):		(A)	
	Individual Sieve		
Sieve Size	Weight Retd. (g)		% Passing
37.5mm (1½")			
25mm (1")			
19mm (³ / ₄ ")			
12.5mm (1/2")			
9.5mm (³ / ₈ ")			
4.75mm (#4)			
2.36mm (# 8)			
1.18mm (#16)			
600ųm (#30)			
300ym (#50)			
150ųm (#100)			
75ųm (#200)			
Pan			
Washing Loss (g)			'% Passing -200
Total Minus #200		1	52
Total Weight Retained:		(B)	

MoDOT Accuracy Check = (A-B) = Less than 1/sieve?


Category: 1001 General Requirements for Material – Engineering Policy Guide

1001.5 Field Testing Procedures

1001.5.1 Sieve Analysis

The frequency of aggregate Quality Assurance tests shall be in accordance with the specifications. This includes retained samples from quality control tests and independent samples. Sieve analysis of mineral filler shall be in accordance with AASHTO T37. Sieve analysis for the determination of particle size distribution of coarse and fine aggregate shall be performed in accordance with AASHTO T27 and T11, with the following exceptions.

1001.5.1.1 Apparatus

57

Sample being split

(a) Stove - Electric, natural gas, propane, or other suitable burner capable of maintaining a controlled temperature, may be used in lieu of an oven.

(b) Pans - Pans of sufficient size and quantity for washing and drying samples and for holding separated fractions of material.

- (c) Brass sieve brush.
- (d) Large spoon or trowel.
- (e) Sample splitter.

1001.5.1.2 Sample Preparation

Samples of aggregate for sieve analysis shall be taken in accordance with <u>EPG 1001.3 Sampling</u> <u>Procedures</u> and reduced to the proper size for testing in accordance with <u>AASHTO T248</u> AASHTO R76. The sample for testing shall be approximately the size shown below and shall be the end result of the sampling method. The selection of samples of an exact predetermined weight (mass) shall not be attempted.

Maximum Size of Particle ¹	Minimum Weight (Mass) of Sample lb.
	(kg)
2" (50 mm)	20 (9)
1-1/2" (37.5 mm)	13.5 (6)
1" (25.0 mm)	9 (4)
3/4" (19.0 mm)	5.5 (2.5)
1/2" (12.5 mm)	3.5 (1.5)
3/8" (9.5 mm)	2.5 (1)
¹ Maximum size of particle is define percent of material will pass.	ed as the smallest sieve through which 100
Fine Aggregate	
Manufactured Fines and Natural Sand	500 grams

Table 1001.5.1.2 Size of Testing

1001.5.1.3 Procedure

The sieve analysis shall be performed in accordance AASHTO T27. When determination of the minus 200 material is required, this shall be performed in accordance with AASHTO T11. A dry gradation may be run on any material where the accuracy of the sieve analysis does not require washing. The district Construction and Materials Engineer should be consulted when there is a question as to whether a dry or washed gradation should be run.

1001.5.1.4 Worksheet Form T-630R and Calculations, Passing Basis

One method for calculating gradation on a passing basis is as follows: The material that has been separated by the sieving operation shall be weighed starting with the largest size retained. This weight (mass) shall be recorded in the plant inspector's workbook on the line corresponding to the sieve on which the material is retained. Examples are given in Fig 1001.10.2 Form T-630R Example 1, page 1 and

page 2. The second largest sized material is then added to the largest size in the weigh pan and the accumulated total is recorded on the line corresponding to the sieve on which the material is retained. This operation is continued with the accumulated total being recorded on the line corresponding to the sieve on which the material is retained down to the smallest sieve, in this example, the No. 200 (75 μ m) size sieve. The final quantity of material remaining in the pan (in this instance, minus No. 200 (75 μ m) material) should be recorded on the line designated as "PAN." The "PAN + LOSS" is the sum of the "LOSS" from washing over a No. 200 (75 μ m) sieve plus the amount retained in the "PAN". The quantity retained on the smallest sieve is then added to the quantity in the "PAN + LOSS" and is to be recorded on the line designated as "TOTAL". The "TOTAL" should equal the original dry weight (mass) within a tolerance of one gram for each sieve that the material passed through. The difference between the "TOTAL" and the "ORIGINAL DRY WEIGHT (MASS) is recorded on the line designated "DIFFERENCE". Tolerance for the sieving is plus or minus 1 gram per sieve. In the examples above, the tolerance should be equal to or less than plus or minus 5 grams (five sieves were used, beginning with the smallest sieve through which 100 percent passed). This tolerance is to be recorded on the line designated as "SIEVE ACCURACY".

The total amount of material finer than the smallest sieve shall be determined by adding the weight (mass) of material passing the smallest sieve obtained by dry sieving to that lost by washing. In the example, the amount lost by washing as recorded on the "LOSS" line was found to be 442 grams. The 7 on the "PAN" line shows that 7 additional grams were obtained in the dry sieving operation. This total quantity, 449 grams, is recorded on the "PAN" line.

Except for the smallest sieve used, the percent passing is determined by dividing the quantity shown for each sieve by the original dry weight (mass) and subtracting the percentage from 100. The percentage passing the smallest sieve is found by dividing the quantity shown on the "PAN + LOSS" line by the original dry weight (mass). The percentage for the smallest sieve is shown on the line for that sieve.

Enter the SM Sample ID in the column next to "RECORD NO," then enter information from Form T-630R in SM.

The following shows Form T-630R being used to record the gradation of a material produced to meet Section 1003 specifications.

FORM T-630R

PLANT INSPECTION AGGREGATE WORKSHEET

LEDGE

MATERIAL

PRODUCT OR SPEC. NO

PRODUCER

PLANT LOCATION PURCHASE ORDER NO.

CONSIGNED TO

FACILITY CODE

DESGINATION

		MECHANICAL	SIEVE ANALYSIS		
RECORD NO.					
DATE				—	
INSPECTOR					
ORIG/WET WT.	%	%	%	%	%
ORIG.DRY WT.	and the second sec	a read of the second	A new could all the	Carrier and Provide Address	Carrier Carrier
WASHED DRY WT.	and a statement of	1 Contraction	A DECEMBER OF A	and the second second	Carl Carlinson
LOSS	A Contractor	and the second second	and the second		and and a state of the state
FIELD MOIST.					SPEC
					LIMIT
37.5 mm					
(1 ½")					
25 mm (1")					
19 mm (3/4")					-
12.5 mm (1/2")					
9.5 mm (3/8")					
4.75 mm (#4)					-
2.36 mm (#8)					
2.0 mm (#10)					
1.18 mm (#16)					
850 µm (# 20)					
600 µm (# 30)					
425 µm (#40)					
300 µm (# 50)					
150 µm (#100)					
75 µm (#200)					
PAN				Constant Concernent (1975)	Conceptual and a second second
PAN + LOSS	Contraction Contractor State		Supervision and State		Contraction of the second
TOTAL	A STREET	Congrangements interesting	Trens and the second	Construction of the local division of the	and the second second second second
DIFFERENCE	A Laboration of State	1	and the second se		Contraction and the
SIEVE ACCURACY	Sector section 1		a second second second second	a second of the second s	and the second distance of the second distanc
TONS ACC/REJ.					
		QUALITY D	ETERMINATION		
ORIG.WT.	Company of the second second	atten in products	21000	and the second se	Concernation Concernation of
DELT		-			
SHALE					
CHERT					
OTHER					
TOTAL DELT					
PLASTICITY INDEX					
IN COMPUTER					

REPORT DATA AND REMARKS

AASHTO T 27: Sieve Analysis of Fine and Coarse Aggregate PROFICIENCY CHECKLIST

Applicant		
Employer		
Trial#	1	2
Fine Aggregate		
1. Reduced per AASHTO R76		
2. Minimum sample mass 500 g		
Coarse Aggregate		
1. Reduced per AASHTO R76 used sample size determined from nominal maximum aggregate size, and MoDOT' s EPG chart		
2. Sample dried to constant mass at 230 ± 9°F (110 ± 5°C), weighed to nearest 0.1% by mass (typically, 1 gram) and recorded		
- AASHTO T 11 may be performed at this point, Washing Material Finer Than		
No. 200 Sieve, dried to a constant mass at $230 \pm 9^{\circ}$ F (110 $\pm 5^{\circ}$ C), weight recorded,		
and weight loss calculated to nearest whole number		
3. Stacked appropriate sieves in descending order		
4. Poured sample in the top sieve without losing material		
5. Agitated Manually or Mechanically		
- Manual Sieving continued until not more than 0.5% by mass of the total sample		
passes a given sieve during 1 minute of continuous hand sieving		
- Mechanical Sieving Verified annually		
- Timer verified/calibrated for sieving thoroughness. (Established by trial or checked		
by measurement on the actual test sample to meet the 0.5% criteria as in hand		
sieving above. (Records kept in the lab)		
 Set at verified/calibrated time approximately 7-10 min. 		
 Or if timer not verified/calibrated, hand sieved afterwards for sieving accuracy 		
6. Precautions taken to not overload sieves		
7. Weighed material in each sieve either by Non-Cumulative or Cumulative method		
8. Total mass of material after sieving agrees with mass before sieving to		
within 1 gram per sieve used (If not, do not use for acceptance testing)		
9. Percentages calculated to nearest 0.1% and reported to nearest whole number		
10. Percentage calculations based on original dry sample mass, including the		
passing No. 200 fraction if T 11 was used		

PASS PASS

FAIL FAIL

Examiner: _____

Date: _____

Appendix

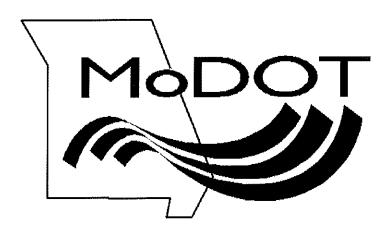
Aggregate Technician

AT - Appendix

2023 – Thermometer List for Aggregate Technician Methods

• <u>AASHTO T11</u>:

- **T11 Oven**: The thermometer for measuring the oven temperature shall meet the requirements of M339M/M339 with a range of at least 90 to 130°C (194 to 266°F) and an accuracy of ± 1.25°C (± 2.25°F) (see note 1),
 - NOTE 1: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM 2877 digital metal stem thermometer
 - ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class, Type T any Class
 - IEC 60584 thermocouple thermometer, Type J or K, Class 1, Type T any Class
 - Dial gauge metal stem (bi-metal) thermometer
 - IEC 60584: thermocouple thermometer, Type T, Class 1


• <u>AASHTO T27</u>:

- **T27 Oven**: The thermometer for measuring the oven temperature shall meet the requirements of M339M/M339 with a range of at least 90 to 130°C (194 to 266°F) and an accuracy of ± 1.25°C (± 2.25°F) (see note 3),
 - NOTE 3: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM 2877 digital metal stem thermometer
 - ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class, Type T any Class
 - IEC 60584 thermocouple thermometer, Type J or K, Class 1, Type T any Class
 - Dial gauge metal stem (Bi-metal) thermometer

2023 – AT - Thermometer list continued . . .

- **T255 Oven**: The thermometer for measuring the oven temperature shall meet the requirements of M339M/M339 with a range of at least 90 to 130°C (194 to 266°F) and an accuracy of ± 1.25°C (± 2.25°F) (see note 1),
 - NOTE 1: Thermometer types to use include:
 - ASTM E1 Mercury Thermometer
 - ASTM 2877 digital metal stem thermometer
 - ASTM E230/E230M thermocouple thermometer, Type J or K, Special Class, Type T any Class
 - 60584 thermocouple thermometer, Type J or K, Special class 1, Type T any Class
 - Dial gauge metal stem (Bi-metal) thermometer

Glossary

Revised: 09/17/2019

Aggregate Glossary of Terms

Absorption - The increase in mass (weight) due to water contained in the pores of the material.

Air Dry Aggregate – Aggregate that is dry at the particle surface but containing some internal moisture.

Coarse Aggregate – Aggregate which is predominately larger than the #4 (4.75mm) sieve.

Combined Aggregate – Aggregate that is a blend of both coarse and fine particles.

Field Sample – A quantity of the material of sufficient size to provide an acceptable estimate of the average quality of a unit.

Fine Aggregate – Aggregate which has a nominal maximum size of the #4 (4.75mm) sieve or smaller.

Lot- A sizable isolated quantity of bulk material from a single source, assumed to have been produced by the same process (for example, a day's production or a specific mass or volume).

Maximum Aggregate Size-(Superpave) One size larger than the nominal maximum aggregate size.

Maximum size of Aggregate/particle – *(in specifications for aggregate)* the smallest sieve opening through which the entire amount of aggregate is required to pass.

Nominal Maximum Size – Nominal Maximum is defined as the smallest sieve which 100% of sample passes.

Oven Dry Aggregate – Aggregate that has no internal or external moisture.

Saturated Surface Dry – An ideal condition in which the aggregate can neither absorb nor contribute water. In this condition, the interior has absorbed all the moisture it can hold, but the surface is dry = No Free Moisture.

Sieve Analysis – Determination of particle size distribution (gradation) using a series of progressively finer sieves.

Test Portion - A quantity of the material to be tested of sufficient size extracted from the larger field sample by a procedure designed to ensure accurate representation of the field sample, and thus of the unit sampled.

Sieving to Completion – Having no more than 0.5 % of aggregate particles retained on any sieve after shaking which should have passed through that sieve. Percent is calculated by mass of material retained divided by the original mass.

Tare – The mass (weight) of a pan or container. Normally the balance is adjusted to a "zero" reading by moving the scale counterbalance, or in the case of electronic scales, by tapping the tare button after the pan is placed on the scale to get a zero reading.

Unit- A batch or finite subdivision of a lot of bulk material (for example, a truck load or a specific area covered).

Wet Aggregate – Aggregate containing moisture on the particle surface.

Absorption: The increase in the mass of aggregate due to water in the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass. The aggregate is considered "dry" when it has been maintained at a temperature of $110 \pm 5^{\circ}$ C for sufficient time to remove all uncombined water by reaching a constant mass.

Bulk Specific Gravity (also known as Bulk Dry Specific Gravity): The ratio of the weight in air of a unit volume of aggregate (including the permeable and impermeable voids in the particles, but not including the voids between particles) at a stated temperature to the weight in air of an equal volume of gas-free distilled water at a stated temperature.

Bulk Specific Gravity (SSD): The ratio of the mass in air of a unit volume of aggregate, including the mass of water within the voids filled to the extent achieved by submerging in water for 15 to 19 hours (but not including the voids between particles) at a stated temperature, compared to the weight in air of an equal volume of gas-free distilled water at a stated temperature.

Apparent Specific Gravity: The ratio of the weight in air of a unit volume of the impermeable portion of aggregate at a stated temperature to the weight in air of an equal volume of gas-free distilled water at a stated temperature.

SSD – Saturated Surface Dry: The condition in which the aggregate has been soaked in water and has absorbed water into its pore spaces. The excess, free surface moisture has been removed so that the particles are still saturated, but the surface of the particle is essentially dry.

Specific Gravity – The ratio of the mass (or weight in air) of a unit volume of a material to the mass of the same volume of gas-free distilled water at stated temperatures. Values are dimensionless.